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ABSTRACT 

 

To determine the occurrence and fate of trace organic contaminants such as endocrine-disrupting 

consumer product chemicals in onsite wastewater treatment systems (OWTS), research was conducted 

encompassing field monitoring of operating OWTS, along with controlled field experiments and 

laboratory tests.  Trace organic contaminants, including sterols, surfactant metabolites, metal-chelating 

agents, antimicrobials, and stimulants, were frequently detected in samples of septic tank wastewaters 

obtained from 30 Colorado OWTS at concentrations ranging over three orders of magnitude.  Non-

residential wastewaters generally had more compounds at higher concentrations than residential 

wastewaters, likely due to differences in water- and chemical-using activities at the source. 

Conventional onsite treatment utilizing septic tanks and soil infiltration through a sandy loam soil 

decreased concentrations of many trace organic contaminants by 90% or more.  Removal of trace organic 

contaminants during anaerobic septic tank treatment was typically low (<50%), with removals attributed 

to sorption to settling solids and anaerobic biotransformation.  The majority of treatment occurred during 

soil infiltration and percolation through a vadose zone, likely through volatilization, sorption to soil 

organic matter, and aerobic biotransformation.  Compounds not removed by these mechanisms can persist 

during onsite treatment using a conventional septic tank and soil treatment unit (e.g., a drainfield).  In 

addition, concentrations of certain degradation products of some trace organic contaminants can increase 

during shallow soil treatment, limiting overall removal.  Additional aerobic biofilter treatment beyond 

traditional anaerobic septic tank treatment enhanced removal for many trace organic contaminants.  

However, soil solution concentrations at the same depth below the soil infiltrative surface were similar 

regardless of the effluent applied (septic tank effluent vs. biofilter effluent).  In addition, increasing the 

hydraulic loading rate to the soil increased mass removal without adversely affecting treatment capacity.     

Even with high removal efficiencies during onsite treatment, some trace organic contaminants 

persisted through 120 cm of unsaturated soil, indicating their ability to reach shallow ground water.  An 

OWTS recharging shallow ground water with minimal dilution and treatment in the ground water prior to 

surface water recharge may adversely affect the receiving environment.  Under most conditions, however, 

additional treatment during deep vadose zone and ground water travel will further decrease 

concentrations, as was found during sampling of Colorado ground waters and surface waters.  

 

Keywords: onsite wastewater treatment, trace organic contaminants, endocrine-disrupting compounds, 

vadose zone, biofilter, ground water quality, wastewater management  
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CHAPTER 1  

SUMMARIZED FINDINGS OF RESEARCH 

 

1.1 Introduction 

 

The objective of this research was to improve the current understanding of the occurrence and 

fate of trace organic contaminants in onsite wastewater treatment systems to aid in minimizing potential 

adverse effects on ecosystem and human health.  Major research findings are summarized in this chapter, 

followed by a description of the areas of focus presented in this completion report.  References are 

provided where further results and information from the research not presented in this completion report 

can be found.  

 

1.2 Research Context, Purpose, and Scope 

 

Wastewater originating from urban areas is commonly treated by large centralized wastewater 

treatment plants (WWTP).  A substantial and growing proportion of wastewater in semi-urban and rural 

regions of the U.S. and in developing countries is treated by decentralized or onsite wastewater treatment 

systems (OWTS), which often provide a cost-effective, sustainable alternative to WWTP.  OWTS receive 

wastewater from a single source or small number of sources, treat wastewater through onsite unit 

operations, and discharge the effluent to a local receiving environment such as underlying ground water.  

The receiving environments to which these systems discharge often provide the water source for the local 

community or can recharge nearby surface waters, therefore effective removal of contaminants during 

onsite treatment is important in minimizing risk to ecosystem and human health. 

While much is known regarding the treatment of bulk parameters such as biochemical oxygen 

demand, nutrients, and pathogens in OWTS, the occurrence and fate of trace organic contaminants such 

as pharmaceuticals and consumer product chemicals is less understood.  Adverse effects, some associated 

with the endocrine system, have been reported in receiving environments of WWTP discharging low 

levels of trace organic contaminants. The purpose of this research was to enhance the current 

understanding of the occurrence and fate of trace organic contaminants during onsite wastewater 

treatment to aid in minimizing potential adverse effects.  The specific objectives of this research were to: 

1)  quantify the occurrence of trace organic contaminants in OWTS varying by source (e.g., 

residential, commercial, institutional), 
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2) assess removal efficiencies of trace organic contaminants during treatment within engineered unit 

operations (e.g. septic tanks, biofilters, constructed wetlands), 

3) assess removal efficiencies of trace organic contaminants during soil treatment (e.g. vadose zone 

soil infiltration), and 

4) provide guidance for the design and management of OWTS to minimize potential adverse effects 

from trace organic contaminants. 

 
A reconnaissance field survey of 30 operational systems in Colorado was conducted to quantify 

the occurrence of trace organic contaminants in OWTS (as affected by wastewater source and treatment 

type) and in receiving environments.  Controlled field-scale experimentation regarding trace organic 

contaminants was conducted at the Mines Park Test Site on the Colorado School of Mines (CSM) campus 

in Golden, Colorado to: assess removal efficiencies during treatment within engineered unit operations, 

quantify daily, weekly, and monthly variations in effluent composition, determine occurrence and fate 

during vadose zone soil treatment as affected by effluent type and hydraulic loading rate, HLR, and 

monitor the soil treatment of a pharmaceutical surrogate during a vadose zone tracer test.  Correlated 

laboratory-scale studies were performed to quantify sorption as a removal mechanism for the 

pharmaceutical surrogate during soil infiltration.  Whole system treatment at the Test Site was assessed by 

integrating engineered treatment and soil treatment data.  The resulting information from the field-scale 

OWTS monitoring along with controlled field-scale and lab-scale experimentation was integrated to 

provide recommendations for design and management of OWTS regarding trace organic contaminants.  

 

1.3 Major Findings 

 

Trace organic contaminants including surfactant metabolites, metal-chelating agents, 

antimicrobials, stimulants, and deodorizers were present in septic tank wastewaters from OWTS serving a 

variety of residential and non-residential sources.  Individual compounds were detected in 0 to 100% of 

wastewater samples in concentrations ranging from <0.5 μg/L to >1000 μg/L.  The levels and frequency 

of occurrence depended on the source, likely due to differences in chemical- and water-using activities.  

For example, convenience store wastewaters primarily originated from public restrooms visited by a large 

and diverse population.  These wastewaters had elevated levels of a hand soap antimicrobial, a toilet bowl 

deodorant, and 15 different antibiotics and pharmaceuticals as compared to single-family home 

wastewaters.  In general, non-residential wastewaters had more trace organic contaminants at higher 

concentrations than residential wastewaters.  Individual compounds were detected less frequently (≤25%) 

and at lower concentrations (max = 19 μg/L) in nearby surface waters and ground waters that could be 
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potential receiving environments.  (Note: selected sites were in OWTS-reliant regions but hydrologic 

connections to specific anthropogenic sources were not attempted as part of this research.) 

Temporal variability of trace organic contaminants in tank wastewaters generally decreased with 

increasing distance from the source (e.g., with increasing hydraulic retention time and level of treatment).  

Daily and weekly variability was low, indicating that grab samples are representative of wastewater 

quality regarding trace organic contaminants.  Monthly variability was greater, likely due to seasonal 

fluctuations in water- and chemical-using activities at the source that could affect wastewater composition 

and site characteristics (e.g., temperature, frequency of maintenance) that could affect treatment 

efficiencies.   

Removal efficiencies of trace organic contaminants within engineered treatment units (i.e. septic 

tank, biofilter, or constructed wetland) ranged from <1% to >99%.  In general, removal efficiencies 

during septic tank treatment were low (<50%), attributed to hydrophobic sorption to solids with 

subsequent settling.  Therefore, in a conventional onsite system utilizing a septic tank and soil treatment 

unit, trace organic contaminants could be loaded to the soil at concentrations similar to influent septic 

tank wastewater concentrations.  Additional aerobic biofilter-based treatment beyond the traditional 

anaerobic tank-based treatment enhanced removal for many trace organic contaminants, likely due to 

volatilization and aerobic biotransformation.  Compounds that were not hydrophobic, volatile, or 

biodegradable persisted within engineered treatment unit operations.  In addition, the concentrations of 

transformation products often increased as parent compounds degraded.   

Greater than or equal to 90% removal (or to less than the reporting level) of trace organic 

contaminants from septic tank effluent was achieved during 240 cm of sandy loam soil treatment, often 

within the first 60 cm of soil treatment.  High removal efficiencies are likely due to sorption to soil 

organic matter and biotransformation.  In an exception to this finding, concentrations of 4-nonylphenol, a 

surfactant metabolite, increased during shallow soil treatment, limiting its overall removal (<50% 

removal).  Soil solution concentrations at the same depth from test cells receiving septic tank effluent 

(STE) or textile filter effluent (TFE) were similar; therefore soil solution concentrations of trace organic 

contaminants 60 cm below the infiltrative surface and deeper were not affected by effluent type (e.g. STE 

vs. TFE).  Soil solution concentrations at the same depth from test cells receiving a design HLR of 2 cm/d 

(a typical value based on Colorado regulations) vs. 8 cm/d were similar; therefore soil solution 

concentrations of trace organic contaminants 60 cm below the infiltrative surface and deeper were not 

affected by design HLR (e.g. 2 vs. 8 cm/d), with the exception of the metal-chelating agent 

ethylenediaminetetraacetic acid, EDTA.  A higher HLR resulted in higher soil solution EDTA 

concentrations at the same depth as compared to a system with a lower HLR.  In general, percent removal 

and mass removal of trace organic contaminants after three years of soil treatment was greater in test cells 
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receiving STE than in those receiving TFE and was greater in test cells receiving a high HLR than in 

those receiving a typical HLR of the same effluent.  The pharmaceutical surrogate Rhodamine WT was 

retarded (retardation factor, RF = 5.4 to 6.6) during vadose zone transport through sandy loam soil due to 

sorption to soil surfaces as compared to a conservative tracer.  Pharmaceuticals such as the quinolones 

which have similar aromatic structure and ionic functional groups may behave similarly to RWT during 

soil treatment.   

Knowledge of the distribution of water- and chemical-using activities contributing to raw 

wastewater can provide initial information regarding the types and levels of trace organic contaminants 

that will be present in OWTS wastewater.  A conventional OWTS (e.g. utilizing septic tank and sandy 

loam soil treatment) can provide good treatment (>90%) of many trace organic contaminants, even 

though it was not specifically designed to do so.  Therefore, the addition of an engineered treatment unit, 

such as a textile biofilter, is not necessary for high removal of many trace organic contaminants in 

systems that are designed, installed, and managed properly.  Removal of trace organic contaminants 

during onsite treatment may be optimized by a number of design features, such as: 1) increasing the 

hydraulic and sludge retention times within a septic tank(s), 2) minimizing solids discharge from the tank, 

3) applying effluent to the soil at an appropriate HLR (~2 to 4 cm/d) to maintain both its infiltrative 

capacity and an active microbial community at the infiltrative surface, and 4) selection of an appropriate 

soil (e.g. loam) with a high organic carbon content and sufficient structure for air and water movement.   

Even with high removal efficiencies, low levels of some trace organic contaminants could reach 

ground water located 240 cm or less below an OWTS.  Under typical conditions in the Front Colorado 

Range, trace organic contaminant concentrations in OWTS effluent will be further reduced during ground 

water recharge and transport prior to potential exposure through a supply well or surface water, thereby 

reducing the risk to ecosystem and human health.  A further understanding of the effects and effect levels 

of individual compounds and mixtures of compounds is needed to fully assess the general risks associated 

with trace organic contaminants in OWTS under different design and environmental conditions.     

 

1.4 Report Organization 

 

This report presents background information, methods, results and discussion, and conclusions 

related to: 1) the occurrence of trace organic contaminants in operational systems in Colorado, 2) fate 

during engineered treatment in operational systems and at the Mines Park Test Site, 3) fate during soil 

treatment as affected by effluent type and hydraulic loading rate, and 4) an integration of results to aid in 

design and management of OWTS regarding trace organic contaminants.  In Chapter 2, background 

information on trace organic contaminants and OWTS is given.  Chapter 3 is a summary of the 
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methodology employed during the field reconnaissance survey and Mines Park Test Site experimentation.  

In Chapter 4, results from the reconnaissance survey regarding the occurrence of trace organic 

contaminants in onsite system wastewaters and receiving environments are presented and discussed.  

Results regarding the fate of trace organic contaminants during engineered treatment as determined in 

select field sites and at the Mines Park Test Site are presented and discussed in Chapter 5.  Results 

regarding the fate of trace organic contaminants during soil treatment as determined at the Mines Park 

Test Site are presented and discussed in Chapter 6.  An integration of the results and their implications are 

presented and discussed in Chapter 7.  A summary of key findings and conclusions derived from the four 

major objectives of the study is presented in Chapter 8 along with recommendations for future research. 

Additional information regarding this research, including elements that are not included in this 

report, can be found in Conn (2008).  Conn (2008) presents details regarding research methodology 

including quality assurance/quality control experiments, site descriptions and flow schematics of the 30 

Colorado OWTS, results from the field-scale tracer test and correlated laboratory experiments using 

Rhodamine WT as a pharmaceutical tracer, and historic data on installation and performance evaluations 

at the Mines Park Test Site.  Several journal articles and conference proceedings papers are in preparation 

or have been published to disseminate the results of the research.  References published at the time of this 

CWI report submission are listed below: 

 
Conn, K.E. 2008. Occurrence and fate of endocrine-disrupting compounds and other trace organic 

contaminants during onsite wastewater treatment. Ph.D. Dissertation, Environmental Science & 
Engineering, Colorado School of Mines, Golden, Colorado. 

 
Kolpin, D.W., W.A. Battaglin, K.E. Conn, E.T. Furlong, S.T. Glassmeyer, S.J. Kalkhoff, M.T. Meyer, 

and D.J. Schnoebelen. 2008. Occurrence of transformation products in the environment: in 
Degradation of Synthetic Chemicals in the Environment. Alistair Boxall (Ed.), Springer. 
http://www.springerlink.com/content/e13001581q65w7m6. 

 
Conn, K.E., R.L. Siegrist, L.B. Barber, and G.K. Brown. 2007. Organic contaminants in onsite 

wastewater treatment systems. In Proceedings of the 11th National Symposium on Individual and 
Small Community Sewage Systems. October 20-24.  Warwick, RI: American Society of Agricultural 
and Biological Engineers: St. Joseph, MI, 701P1107cd. 

 
Conn, K.E., L.B. Barber, G.K. Brown, and R.L. Siegrist. 2006. Occurrence and fate of organic 

contaminants during onsite wastewater treatment.  Environmental Science & Technology.  40: 7358-
7366. 

 
DeJong (Conn), K.E., R.L. Siegrist, L.B. Barber, and A.L. Wren. 2004. Occurrence of emerging organic 

chemicals in wastewater effluents from onsite systems.  In Proceedings of the 10th National 
Symposium on Individual and Small Community Sewage Systems, American Society of Agricultural 
Engineers, March 21-24.  pp. 400-407. 
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CHAPTER 2  

BACKGROUND 

 

 Background information regarding trace organic contaminants, OWTS, and design and 

management considerations is given in this chapter.  

 

2.1 Trace Organic Contaminants 

 

Historically, interest and concern regarding organic chemicals in the environment has focused on 

compounds originating from agricultural or industrial practices, which may be measured in the 

environment at milligram per liter (mg/L) or higher concentrations, and have traditional adverse 

toxicological effects such as carcinogenicity.  More recently, there has been an emerging interest in 

organic chemicals present in the environment at trace levels (e.g. microgram per liter, μg/L, or less) 

which may elicit non-traditional toxicological endpoints such as adverse effects on the endocrine system.  

Trace organic contaminants include prescription and non-prescription pharmaceuticals, natural and 

synthetic hormones, and household consumer product chemicals such as surfactants, fragrances, 

plasticizers, and flame retardants (Table 1) which are used frequently and washed or excreted into the 

wastewater system.  

 

Table 1. Some classes of trace organic contaminants and example compounds. 
 

Class Example Compounds 
Antimicrobials triclosan, triclocarban 
Flame-retardants tri (2-chloroethyl) phosphate, tributyl phosphate 
Fragrances menthol, indole 
Hormones 17-β-estradiol, 17-α-ethynylestradiol, estrone 
Metal-chelating agents ethylenediaminetetraacetic acid (EDTA), nitrilotriacetic acid (NTA) 
Pharmaceuticals acetaminophen, caffeine, sulfamethoxazole 
Plasticizers bisphenol A 

Surfactant metabolites 4-nonylphenol (NP), 4-nonylphenolethoxylates (NPEOs),  
4-nonylphenolethoxycarboxylates (NPECs) 

 

 

Numerous studies have shown the occurrence of trace organic contaminants in the influent of 

WWTP (Heberer 2002 and references within).  Since WWTP are designed to remove bulk constituents 

such as biochemical oxygen demand, suspended solids, and nutrients rather than individual organic 
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chemicals, these compounds or their degradation products are often not completely removed during 

treatment and are discharged to the receiving environment, such as a nearby surface water (Barber et al. 

2006, Glassmeyer et al. 2005, Kolpin et al. 2002, Barber et al. 2000), where adverse effects can occur.  

For example, in Boulder, Colorado, various trace organic contaminants have been measured in WWTP 

effluent being discharged to Boulder Creek.  As compared to the upstream population, white sucker fish 

living downstream of the effluent discharge point have a significantly higher female to male ratio, are 

present as intersex fish (i.e. fish with both male and female reproductive tissue) in about 10% of the 

population, and have other abnormalities in gonadal morphology (Vajda et al. 2008, Woodling et al. 

2006).  Other studies have reported similar endocrine-disrupting effects on other species of fish and a 

variety of aquatic organisms such as alligators and oysters exposed to trace organic contaminants (Milnes 

et al. 2006, Nice et al. 2003, Guillette and Gunderson 2001).  Potential effects on humans from exposure 

to trace organic contaminants such as endocrine-disrupting compounds are complex to determine and 

currently unknown. 

 A number of compounds with these endocrine-disrupting properties have been identified 

including the natural hormone 17-β-estradiol, the synthetic hormone 17-α-ethynylestradiol, and the 

degradation product estrone.  Some phenolic consumer product chemicals exhibit less potent endocrine-

disrupting effects than the hormones, but may be of equal or greater environmental relevance due to their 

large production and usage in the world.  These include plasticizers such as bisphenol A and the 

surfactant metabolites 4-nonylphenol (NP), 4-t-octylphenol, 4-nonylphenolethoxylates (NPEOs), 4-t-

octylphenolethoxylates (OPEOs), and 4-nonylphenolethoxycarboxylates (NPECs).   

Other adverse effects have been associated with trace organic contaminant occurrence in the 

environment.  The overuse of antimicrobial agents such as triclosan and triclocarban in household 

products has led to the development of antimicrobial-resistant bacteria, which may reduce the 

effectiveness of these compounds in critical settings such as hospitals. The majority of ingested 

prescription and non-prescription pharmaceuticals are excreted unmetabolized and may elicit their 

designed biological effect in non-target organisms.  Other trace organic contaminants, such as the metal-

chelating agents ethylenediaminetetraacetic acid (EDTA) and nitrilotriacetic acid (NTA), may serve as 

indicators of anthropogenic impact due to their ubiquitous use and frequent co-occurrence with other 

consumer product chemicals. 

 

2.2 Onsite Wastewater Treatment Systems (OWTS) 

 

While much research has focused on the occurrence and fate of trace organic contaminants in 

WWTP and receiving environments, a substantial contribution of trace organic contaminants to the 
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environment may be through the discharge of treated effluent from OWTS.  These systems serve over 22 

million U.S. homes, businesses and other facilities (Figure 1), and approximately one third of new 

residential and commercial development, resulting in over 15 billion liters of wastewater that is processed 

onsite and discharged to the environment every day (Lowe et al. 2006, U.S. Census Bureau 2003, USEPA 

2002).  In the vast majority of these systems, wastewater from a single source or small number of sources 

is treated locally within engineered unit operations such as septic tanks followed by soil treatment (Figure 

2).  In some systems, septic tank effluent, STE, is treated within additional engineered units such as a 

biofilter or constructed wetland prior to discharge to the soil.  The treated effluent from an OWTS may 

ultimately recharge underlying ground water that supplies water to the local population or nearby surface 

water, so effective removal of contaminants by OWTS is critical to both ecosystem and human health. 

 

 
 

Figure 1. Example source distribution of onsite wastewater treatment systems. 
[Data from Boulder, Colorado provided by Jill Tomaras, Colorado School of Mines.] 

 
 

2.3 Trace Organic Contaminants in OWTS    

 
Much is known regarding the occurrence and treatment of bulk wastewater parameters in OWTS 

serving various residential and non-residential sources (Crites and Tchobanoglous 1998).  In systems that 

are designed, installed, and managed appropriately, effective removal of many pollutants can be achieved.  

For example, greater than 90% removal of influent concentrations of oxygen demanding substances, 

particulate solids, bulk organic carbon, and pathogens can be achieved during onsite treatment, while 

nutrient removal (e.g. nitrogen and phosphorus species) is more variable (Lowe and Siegrist 2008, Van 

Cuyk et al. 2001, Crites and Tchobanoglous 1998).  Less is known, however, regarding the occurrence 

and treatment of individual organic contaminants in OWTS. 
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Figure 2. Key components of an onsite wastewater treatment system (top) and relevant removal 
mechanisms for trace organic contaminants in common treatment units (bottom). 

 

 

Past research regarding organic chemicals in OWTS focused on Environmental Protection 

Agency (EPA) – designated “priority pollutants” such as volatile organic compounds, VOCs (Sauer and 

Tyler 1996, Umari et al. 1995, DeWalle et al. 1985), and detergent-derived surfactants and other 

consumer product chemicals (Robertson 1994, Nielson et al. 2002) which were measured in STE typically 

in mg/L concentrations, persisted during septic tank treatment, and were hypothesized to be removed in 
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the subsurface by volatilization, sorption and biodegradation.  Current organic chemical research in 

OWTS has focused on trace organic contaminants originating from household consumer products.  A 

summary of recent field monitoring studies is given in Table 2.  These studies have reported a wide range 

of concentrations of pharmaceuticals and consumer product chemicals such as sterols, fragrances, 

plasticizers, flame-retardants and detergent metabolites in STE, from less than 1 μg/L to greater than 1000 

μg/L.  The studies suggest that concentrations of some trace organic contaminants in STE can be orders 

of magnitude higher than concentrations in WWTP effluents (Rudel et al. 1998), there can be more 

temporal variability in STE from non-residential sources than from residential sources (Chalew 2006), 

and that treatment by an additional engineered unit operation such as a sand filter can reduce effluent 

concentrations of some compounds (Chalew 2006), while more frequent detections at higher 

concentrations were reported for other compounds (Zimmerman 2005). 

  Detections of trace organic contaminants in the subsurface varied by compound, location, and 

sampling event.  No trace organic contaminants were measured above the reporting level in ground water 

down gradient of OWTS (Hinkle et al. 2005).  In other studies (Carrara et al. 2008, Godfrey et al. 2007, 

Swartz et al. 2006), trace organic contaminants such as carbamazepine, sulfamethoxazole, NP, and 4-

nonylphenoldiethoxycarboxylate (NP2EC) were detected at least 20 m down gradient of OWTS.  These 

studies identify a need for a comprehensive assessment of the occurrence of trace organic contaminants in 

onsite systems from varying sources and an assessment of the fate of these compounds during engineered 

treatment and soil treatment through controlled experimentation. 

 

2.4 Design and Management Considerations 

 

OWTS are designed to protect human and environmental health by hydraulically processing all of 

the wastewater generated while treating the wastewater to a level which minimizes adverse effects.  

Unlike WWTP which are regulated through effluent water quality monitoring prior to discharge to a 

receiving environment, there is currently no defined effluent of an OWTS that can be easily monitored.  

Rather than a performance-based design rationale, OWTS are usually prescriptively designed based on 

conservative flow assumptions and basic soil tests that may or may not accurately describe the future 

system (Siegrist 2006).  Design considerations that can affect the performance of an OWTS include septic 

tank sizing, use of an additional engineered unit operation (and associated design decisions specific to 

each treatment technology), HLR to the soil infiltrative surface (which determines the surface area of the 

field), suitability of the soil, and depth to ground water or other limiting conditions. 
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For example, to design a conventional OWTS for a 3-bedroom single-family home based on 

Colorado’s Guidelines on Individual Sewage Disposal Systems (CDPHE 2008), the average daily flow is 

calculated based on the assumption that there are two people per bedroom and each person produces 284 

L (75 gallons) of wastewater per day.  The design daily flow, Q, includes a safety factor of 1.5: 

 

Design daily flow, Q = 

3 bedrooms * 2 people/bedroom * 284 L/person/day * 1.5 safety factor 

= 2555 L/d (675 gal/d) 

 

The septic tank(s) is sized according to the number of bedrooms, with 3800 L (1000 gal) as the 

minimum septic tank capacity required.  A hydraulic residence time in the septic tank of 1 to 2 days is 

typical- in Colorado the goal is at least 30 hours.  The soil treatment unit usually utilizes native soil that 

has been deemed suitable based on local regulations. For example, in Colorado, soil with a percolation 

rate faster than 2.54 cm per hour and slower than 2.54 cm per five minutes as determined by a percolation 

test is acceptable.  The surface area of the field can be determined based on the design daily flow, Q, and 

a long-term acceptance rate (LTAR), according to the relationship: 

 

)12(
)//(

)/()( 2
2 −=

dftgalLTAR
dgalQftSA  

 

where SA = surface area of the soil infiltration treatment unit in square feet.  A maximum LTAR of 0.72 

gal/ft2/d (~3 cm/d) is allowed for a sandy loam soil in Colorado, resulting in a minimum required field 

area of 940 ft2 (~90 m2) in the example above.  A minimum distance to limiting conditions is often 

required, which includes ground water, bedrock, surface water, drinking water wells and others.  In 

Colorado, a minimum of 120 cm of unsaturated soil below the infiltrative surface to the high water table 

is required. 

Variances from these requirements are allowed.  For example, reductions of up to 50% of the soil 

treatment unit surface area are allowed in Colorado with use of a gravel-less infiltrative surface, use of a 

dosing system (rather than flow by gravity), and other engineered variations (CDPHE 2008).  A reduction 

of 50% of the surface area could result in a doubling of the HLR to the soil treatment unit.  Use of 

additional engineered treatment units beyond traditional septic tank treatment may also be considered for 

use in regions with unacceptable conditions for the installation of an OWTS (e.g. rocky soil, shallow 

ground water, nearby surface water).  No variance is allowed for the minimum distance to ground water 

of 120 cm in Colorado, though in other states it may be as little as 25 cm or as much as 240 cm.  
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Once the system has been designed, installed, and is in operation, the property owner is often the 

primary management entity, and the performance and lifetime of an OWTS depend on the actual site 

conditions (i.e. heterogeneities within the native soil), appropriate water- and chemical-using practices at 

the source, and the frequency of solids removal from the septic tank.  Failure of an OWTS is most 

frequently defined as a hydraulic failure as evidenced by effluent backing up into the property or 

surfacing at the land surface above the tank or field.  Because of the lack of effluent monitoring, an 

OWTS failure is rarely defined by a performance failure even if contamination is occurring in a receiving 

environment such as ground water.  Therefore, to minimize risks to human and environmental health, 

OWTS must be designed to effectively treat all potential contaminants originating from wastewater.  

Pathogens, which can cause disease and infection, biochemical oxygen demand and nutrients, which can 

cause eutrophication in surface waters and adverse effects in humans (e.g. methemoglobinemia) at 

elevated levels, have historically been the main constituents of concern regarding OWTS effluent quality.  

However, trace organic contaminants may need to be considered during OWTS design and management 

to minimize potential risks to exposed organisms. 

 The effective removal of contaminants during onsite wastewater treatment is critical to ecosystem 

and human health.  While much is known regarding bulk parameters, less is understood about the 

occurrence, fate, and potential risk of trace organic contaminants in onsite systems.  Prior studies of trace 

organic contaminants in OWTS have primarily monitored select pharmaceuticals and other compounds in 

a few residential wastewaters and ground water monitoring wells.  The goal of this research project was to 

provide a comprehensive assessment of the occurrence and fate of trace organic contaminants during 

onsite treatment.  The research aimed to quantify the types of consumer product chemicals and their range 

of expected concentrations in onsite system wastewaters varying by source (i.e. residential, commercial, 

or institutional).  The results also aimed to provide expected removal efficiencies of trace organic 

contaminants varying by physicochemical properties during conventional tank/soil treatment systems and 

systems utilizing additional engineered treatment.  The information was integrated to provide guidance 

for design and management of onsite wastewater treatment systems specific to trace organic contaminants 

to minimize impacts on receiving environments and potential risk to ecosystem and human health. 
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CHAPTER 3  

METHODOLOGY 

 

 The methodology employed during this research is summarized in this chapter.  To quantify the 

occurrence of trace organic contaminants in OWTS and receiving environments, a reconnaissance survey 

of 30 operational systems and 18 receiving environments was conducted.  To assess the fate of trace 

organic contaminants during engineered treatment, a subset of operational systems were sampled, and 

controlled field-scale experiments were conducted at the Mines Park Test Site in Golden, CO.  To assess 

the fate of trace organic contaminants during soil treatment, monitoring of soil solution from in-situ soil 

test cells was conducted at the Test Site.  Additional methodology information has been previously 

reported (Conn 2008).   

 

3.1 Field Reconnaissance Survey 

 

3.1.1 Study Design and Site Selection 

 

 The reconnaissance survey was conducted in Summit and Jefferson Counties, Colorado.  Summit 

County is a rapidly growing mountain resort region located approximately 100 km west of Denver with a 

population in 2000 of 23,548 with 15 persons per km2 (39 persons per square mile).  Jefferson County 

spans a large region of the Front Range foothills west and south of Denver.  In 2000, the population was 

listed as 527,056 with 264 persons per km2 (683 persons per square mile).  Colorado’s population is 

predicted to increase from 4,168,000 in 2000 to 5,188,000 in 2025 (U.S. Census Bureau 2003) with much 

of that growth occurring in Summit and Jefferson Counties.  Both counties rely heavily on onsite 

wastewater treatment: in total, there are currently approximately 28,000 OWTS in operation (J. Rada and 

J. Dale, personal communications, April 13, 2003).  The distribution of source types and design types in 

the sampling regions are similar to those found nationwide.  The vast majority (~95%) receive waste from 

domestic sources, including single- and multi-family homes, while the remaining systems serve 

commercial and institutional sources.  Of the 28,000 systems, approximately 98% have a conventional 

design consisting of a septic tank or series of tanks that discharge effluent to a soil treatment unit by pump 

or gravity flow.  The remaining 2% of systems currently in use utilize an additional engineered treatment 

unit such as a filter, aerobic unit, or aquatic system to improve effluent quality before discharge to the 

soil. 
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 Thirty OWTS, nine water supply wells, and nine surface waters in Summit and Jefferson 

Counties were selected for inclusion in the reconnaissance survey.  Of the 30 OWTS (Table 3), 16 serve 

residential sources (single- and multi-family homes), with a range of characteristics (e.g. water use from 

130 to 2600 L/d). This type of system accounts for >75% of onsite wastewater treatment in the U.S. 

(Lowe et al. 2006).  The other fourteen systems serve non-residential sources (food establishments, 

convenience stores, retail centers, elementary schools, a church, and veterinary hospitals) with more 

variable characteristics (e.g. water use from 100 to 13,500 L/d).  These non-residential systems were 

hypothesized to have different, higher-strength wastewater regarding trace organic contaminants as 

compared to residential systems.     

 The thirty sites included 22 tank-based treatment units, 7 biofilter-based treatment units, and 1 

subsurface-flow constructed wetland (Figure 3).  In the tank-based treatment systems, wastewater from 

the source was treated in one to five septic tanks in series before discharge to the soil treatment unit.  In 

the biofilter-based treatment systems, septic tank wastewater was recirculated through a textile biofilter 

prior to discharge to the soil treatment unit.  All 7 systems included in the study utilized Orenco 

“Advantex” technology (www.orenco.com), designed for enhanced nitrogen removal by recycling septic 

tank wastewater on average 1 to 5 times over the biofilter prior to discharge to the soil.  In the wetland-

based treatment system, septic tank effluent was pumped to a subsurface constructed wetland prior to 

discharge to the soil.  At the beginning of the study all systems had been in operation between one and 41 

years (median = 12 years).  Estimated hydraulic retention times (HRTs) within engineered unit operations 

prior to soil application in the 30 systems ranged from 1 to 52 days (median = 7 days), and hydraulic 

loading rates (HLRs) to the soil ranged from 0.21 to 2.9 cm/d.   

  From the thirty OWTS, five sites were selected for analysis of additional non-target trace organic 

contaminants as part of a larger source characterization study conducted by the United States Geological 

Survey (USGS) Toxic Substances Hydrology Program.  The five sites were (Table 3): a multi-family 

home (Site 16), a restaurant (Site 17), a convenience store (Site 20), an elementary school (Site 26), and a 

veterinary hospital (Site 29). 

 A ground water or surface water supply well was located on the same premises as each OWTS.  

Nine wells were selected at random for sampling in conjunction with the OWTS.  Nine tributary surface 

water sites near the OWTS or in nearby areas utilizing OWTS were additionally selected for sampling. 

These 18 samples represent a reconnaissance effort to obtain preliminary information on occurrence of 

trace organic contaminants in receiving environments in Summit and Jefferson Counties.   
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Table 3. Description of the 30 onsite wastewater treatment systems located in 
Summit and Jefferson Counties, Colorado. 
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Table 3. (Continued) 
a Based on - A, onsite flow meter; B, personal interviews and system capacity reports; C, literature values 
for relevant activities (Crites and Tchobanoglous 1998). b Treatment type – T, tank-based; B, biofilter-
based; W, wetland-based. c Sampling locations shown in Figure 3 – I, inlet; II, inlet mixed with filtrate; 
III, effluent (1 or more tanks); IV, biofilter effluent; V, filtrate recirculation tank; VI, end of subsurface 
flow constructed wetland; Well, supply well on property was sampled. d HRT, nominal engineered 
treatment hydraulic retention time = 

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
)/(

)(
dLUseWater

LCapacityTotalUnitsTreatmentEngineered . e HLR, hydraulic 

loading rate =
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
L
cm

cmAreaSurfaceUnitTreatmentSoil
dLUseWater

1
1000

)(
)/( 3

2
.    f Effluent and solids sampled for 

additional non-target USGS trace organic contaminant analysis in spring 2004 (see Conn 2008). g 
Information not available. 

 

 

 

Figure 3. Schematic of sample collection points for onsite systems utilizing A) tank-based treatment, B) 
biofilter-based treatment, and C) wetland-based treatment. [See Table 3-1 for site descriptions.  

Locations I and III are anaerobic.  Locations II, IV, V, VI are aerobic.]  
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3.1.2 Sample Collection 

 

 The thirty OWTS, nine wells, and nine surface waters were sampled twice during August to 

October 2003 and March to May 2004.  A subset of the onsite systems was sampled a third time in 

October 2005 for bulk wastewater parameters only. At each OWTS, grab samples of wastewater were 

collected from the clarified layer located at mid-depth (~0.5 m below the liquid surface) at the outlet of 

each tank using a tank sampler.  At some sites, samples were collected at the tank inlet and other locations 

in the treatment train (specified by roman numerals in Table 3 and Figure 3), resulting in a total of 45 

unique sampling locations.  In May 2004, settled septic tank solids from the five USGS-selected sites 

were sampled using a stainless steel bucket.  Between sites the tank sampler and bucket were rinsed three 

times with distilled water, three times with a 50% ethanol / 50% distilled water solution, and five times 

with distilled water.  Well samples were collected after any treatment processes directly from an outside 

or inside faucet.  A grab sample was obtained at each surface water site.   

Unfiltered samples were collected in amber glass bottles that had been pre-cleaned with soap, 

rinsed 3 times with tap water, rinsed 3 times with distilled water, and oven burned at 250 ºC for 12 hours.  

Samples from each location were split into three aliquots: one unpreserved for bulk parameter analysis, 

one unpreserved for trace organic contaminant analysis, and one preserved with 1% v/v formalin (37% 

formaldehyde) for trace organic contaminant analysis.  In May 2004, additional wastewater aliquots and 

solids samples were collected for the five USGS-selected sites.  Samples were stored at 4 ºC until 

analysis, which generally was performed within 24 hours for bulk wastewater parameters, within 2 weeks 

for unpreserved trace organic contaminants, and within 1 month for preserved trace organic contaminants.  

Samples for the USGS study were shipped immediately for analysis by the USGS laboratories.    

 

3.1.3 Analytical Procedures 

 

All samples were analyzed for a suite of bulk wastewater parameters (Table 4) by standard 

methods (APHA 1998, Hach 1998) and 35 target trace organic contaminants (Table 5) using methods 

modified from methods developed by Dr. Larry Barber at the USGS (Barber et al. 2000).  Samples were 

prepared for analysis for target trace organic contaminants by either a continuous liquid-liquid extraction 

(CLLE) or an acetyl propanol derivatization method.  Twenty nine nonionic trace organic contaminants 

including 4-nonylphenol (NP), 4-t-octylphenol, 4-nonylphenolmonoethoxylate (NP1EO), 4-

nonylphenoldiethoxylate (NP2EO), 4-nonylphenoltriethoxylate (NP3EO), 4-nonylphenoltetraethoxylate 

(NP4EO), 4-t-octylphenolmonoethoxylate (OP1EO), 4-t-octylphenoldiethoxylate (OP2EO), 4-t-
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octylphenoltriethoxylate (OP3EO), 4-t-octylphenoltetraethoxylate (OP4EO), and 4-t-

octylphenolpentaethoxylate (OP5EO) were isolated using CLLE.  A one-liter unpreserved, unfiltered 

sample was spiked with surrogate standards (d21-2,6-di-t-butyl-4-methylphenol, d6-bisphenol A, 4-n-

nonylphenol, 4-n-nonylphenolmonoethoxylate, 4-n-nonylphenoldiethoxylate, d4-17β-estradiol, and d7-

cholesterol), ionic strength was increased by adding 50 g of sodium chloride, and pH was dropped below 

2 by adding 3.5 mL of sulfuric acid (25% v/v).  Wastewater samples were often diluted 2:1 or more with 

distilled water to minimize matrix effects.  The samples were extracted for 7 hours, during which time 80 

mL of distilled methylene chloride was recycled through a microdroplet dispersing frit to improve 

extraction efficiency.  The extract was concentrated under nitrogen gas to 0.5 mL and spiked with an 

internal standard mix of deuterated polycyclic aromatic hydrocarbons (d4-1,4-dichlorobenzene, d8-

naphthalene, d10-acenapthalene, d10-phenanthrene, d12-chrysene, d12-perylene). The extract was transferred 

to a GC/MS vial for analysis by capillary column GC/MS. 

EDTA, NTA, 4-nonylphenolmonoethoxycarboxylate (NP1EC), 4-

nonylphenoldiethoxycarboxylate (NP2EC), 4-nonylphenoltriethoxycarboxylate (NP3EC), and 4-

nonylphenoltetraethoxycarboxylate (NP4EC) required derivatization to be analyzed by GC/MS due to 

their active functional groups and non-volatility.  A 100-mL formalin-preserved sample was poured into a 

250-mL pear shaped flask that had been pre-cleaned with soap, rinsed three times with tap water, rinsed 

three times with distilled water, and burned at 500 ºC over an 8-hour time period.  Wastewater samples 

were often diluted 2:1 or more with distilled water to minimize matrix effects.  The samples were spiked 

with surrogate standards (d12-EDTA and 4-n-NP2EC) and evaporated to dryness at 90° C for 36 hours.  

After cooling, two milliliters of formic acid was added and the sample was rotary vacuum evaporated to 

dryness.  The residue was reacted with 2 mL of 1-propanol/acetyl chloride (10% v/v) at 90° C for one 

hour to form the propyl esters of the analytes.  Ten mL of 2% potassium bicarbonate and 2 mL of 

chloroform were added to the flask and vortex mixed for 30 seconds.  After settling, the chloroform layer 

was removed and passed over a sodium sulfate drying column to remove any residual water.  The 

chloroform extraction from the potassium bicarbonate solution was repeated 3 additional times with 1 mL 

each, followed by a 1 mL chloroform rinse of the drying column.  The chloroform (~5 mL) was 

evaporated to dryness by nitrogen gas. The residue was re-dissolved in 200 µL of toluene and spiked with 

an injection standard (1-phenylnonane).  The extract was transferred to a GC/MS vial for analysis by 

capillary column GC/MS. 
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Table 5. Summary of target trace organic contaminants analyzed during the reconnaissance survey. 
[CASRN = Chemical Abstracts Service Registry Number. Method: 1, continuous liquid-liquid extraction; 

2, acetyl propanol derivatization.  
NA, not available.] 

 
Compound CASRN Use Method 
Bisphenol A 80-05-7 plasticizer 1 
2[3]-t-Butyl-4-methoxyphenol 25013-16-5  antioxidant 1 
4-t-Butylphenol  98-54-4  antioxidant 1 
Caffeine 58-08-2  stimulant 1 
Cholesterol 57-88-5  animal steroid 1 
Coprostanol 360-68-9  animal fecal steroid  1 
1,2-Dichlorobenzene  95-50-1  fumigant 1 
1,3-Dichlorobenzene  541-73-1 fumigant  1 
1,4-Dichlorobenzene  106-46-7  deodorizer 1 
2,6-Di-t-butyl-1,4-benzoquinone  719-22-2  antioxidant byproduct 1 
2,6-Di-t-butyl-4-methylphenol 128-37-0  antioxidant 1 
2,6-Di-t-butylphenol  128-39-2  antioxidant 1 
Ethylenediaminetetraacetic acid  60-00-4  metal complexing agent 2 
4-Ethylphenol  123-07-9  plasticizer 1 
4-Methylphenol 106-44-5  disinfectant 1 
Nitrilotriacetic acid  139-13-9  metal complexing agent 2 
4-Nonylphenol  25154-52-3  surfactant metabolite 1 
4-Nonylphenoldiethoxycarboxylate 106807-78-7 surfactant metabolite 2 
4-Nonylphenoldiethoxylate NA surfactant metabolite 1 
4-Nonylphenolmonoethoxycarboxylate 3115-49-9 surfactant metabolite 2 
4-Nonylphenolmonoethoxylate 9016-45-9 surfactant metabolite 1 
4-Nonylphenoltetraethoxycarboxylate NA surfactant metabolite 2 
4-Nonylphenoltetraethoxylate NA surfactant metabolite 1 
4-Nonylphenoltriethoxycarboxylate NA surfactant metabolite 2 
4-Nonylphenoltriethoxylate NA surfactant metabolite 1 
4-n-Octylphenol  1806-26-4  plasticizer 1 
4-t-Octylphenol  140-66-9  surfactant metabolite 1 
4-t-Octylphenoldiethoxylate NA surfactant metabolite 1 
4-t-Octylphenolmonoethoxylate 9036-19-5 surfactant metabolite 1 
4-t-Octylphenolpentaethoxylate NA surfactant metabolite 1 
4-t-Octylphenoltetraethoxylate NA surfactant metabolite 1 
4-t-Octylphenoltriethoxylate NA surfactant metabolite 1 
4-t-Pentylphenol  80-46-6  plasticizer 1 
4-Propylphenol  645-56-7  plasticizer 1 
Triclosan  3380-34-5  antimicrobial 1 
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 Extracts from both sample extraction methods were analyzed by electron impact GC/MS in the 

full scan and selected ion monitoring (SIM) modes.  The general gas chromatography conditions were: 

Hewlett Packard (HP) 6890 GC; column - HP Ultra II (5% phenylmethyl silicone), 25 m x 0.2 mm, 33 

μm film thickness; carrier gas – ultra high purity helium with a linear flow velocity of 27 cm/sec; 

injection port temperature – 300 ºC; initial oven temperature – 40 ºC (CLLE), 100 ºC (derivatization); 

split vent open – 0.75 min; ramp rate – 6 ºC/minute to 300 ºC; hold time – 15 minutes at 300 ºC.  The 

mass spectrometer conditions were: HP 5793 Mass Selective Detector; tune with perfluorotributylamine; 

ionization energy – 70 eV; source temperature – 250 ºC; interface temperature 300 ºC; full scan – 40 to 

550 atomic mass units at 1 scan/second.   

Target compound concentrations were calculated based on SIM data using diagnostic ions for 

each compound.  Each compound was identified based on a peak signal to noise ratio of at least 3:1, 

matching of retention times (± 0.02 min) and ion ratios (± 20%) determined from analysis of authentic 

standards.  A 7-point standard curve (typically ranging from 0.01 to 50 ng/μL) based on the response ratio 

to an internal standard was used for calculating concentrations.  Surrogate standards were added prior to 

extraction and derivatization to evaluate compound recovery and whole method performance.   

Full scan chromatograms were used to identify semi-quantifiable compounds in environmental 

samples.  The largest 50 peaks in each full scan chromatogram of the underivatized extract were 

integrated using ChemStation software (version D), and each peak’s spectral composition was compared 

against the NIST Mass Spectral Search Program library (Version 1.6d, 1998).  A quality value from 0 to 

100 (with 100 being a perfect match) was assigned by the software to each potential compound to indicate 

how well the spectrum matched the spectrum of the peak in the environmental sample.  The relative size 

of each peak was also given (as a percent of the total peak area).  The ten largest peaks and/or peaks with 

a quality value of 90 or greater were recorded, with special note given to those with a large percent area 

and a high quality value. 

The five USGS-selected samples were additionally analyzed by three USGS laboratories for 120 

pharmaceuticals, antibiotics, and non-target trace organic contaminants in wastewater and by one of those 

laboratories for 61 trace organic contaminants on septic tank solids.  Prescription and non-prescription 

pharmaceuticals were analyzed (Cahill et al. 2004) by solid-phase extraction (SPE) and positive 

electrospray ionization high performance liquid chromatography/mass spectrometry (ESI-HPLC/MS).  

Filtered water samples were analyzed for antibiotics by SPE using ESI-HPLC/MS (Meyer et al. 2007). 

Additional trace organic contaminants were isolated from filtered samples by SPE, elution with 

methylene chloride/diethyl ether, and analysis by full scan GC/MS (Zaugg et al. 2001) using similar 

protocols (i.e. surrogate standards) as the CLLE method. The non-target trace organic contaminants 
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determined in wastewater also were measured on tank solids using accelerated solvent extraction with a 

water/isopropanol solution, SPE cleanup, and analysis by GC/MS (Burkhardt et al. 2005).   

 

3.1.4 Quality Assurance 

 

A field blank was collected on each sampling trip from a lab distilled water source subjected to 

the same sample processing, handling, and equipment as the environmental samples.  A randomly-

selected wastewater sample from each sampling trip was collected in triplicate to perform quality control 

analyses on a duplicate and matrix spike sample.  Field blanks, field replicates, lab blanks, lab replicates, 

and field and laboratory duplicate matrix spikes comprised approximately 40% of the analyses conducted 

with each set of environmental samples. Each method incorporated surrogate standards to evaluate 

method performance for individual samples. Additional quality assurance included solvent and reagent 

blanks and replicate GC/MS injections.  Environmental concentrations within three times the average 

values observed in the blank were reported as less than the reporting level. 

 

3.2 Mines Park Test Site Experimentation  

 

In 1998 the Mines Park Test Site was established on the Colorado School of Mines (CSM) 

campus in Golden, Colorado, to enable controlled field experimentation to enhance the quantitative 

understanding of OWTS design and performance (Small Flows 2008a).  At the site, wastewater from an 

8-unit apartment complex is diverted and managed onsite using above-ground pilot-scale unit operations 

and below-ground soil treatment units with associated sensors and monitoring devices.  Experimentation 

relevant to this research, which includes a vadose zone tracer test and various characterization sampling 

experiments, utilized a treatment train designed to investigate effects on soil treatment due to differences 

in engineered pre-treatment technologies.  The treatment train (Figure 4, sampling locations numbered in 

red) included septic tanks, a textile biofilter, a membrane bioreactor, and 18 soil infiltration test cells (of 

which 12 were outfitted with sampling devices) which began receiving effluent in April 2004.  A soil test 

cell receiving tap water from a companion study was included for comparison purposes.  A wealth of data 

is available from completed and on-going studies regarding site assessment, installation of unit 

operations, and characterization of the wastewater and the treatment efficiencies of the unit processes for 

a suite of chemical and microbial wastewater parameters (Lowe and Siegrist 2008, Walsh 2006, Van 

Cuyk et al. 2005, Siegrist et al. 2004, Dimick 2005, Tackett 2004, Lowe and Siegrist 2002).  

Characterization of the site specific to this research project is summarized below.   
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3.2.1 Site Description 

 

3.2.1.1 Natural Resource Characterization 

 

The Test Site is located in the Rocky Mountain Front Range foothills in Golden, Colorado 

approximately 1820 m above sea level. Typical temperatures range between 0.5 ºC in the winter and 26 

ºC in the summer. The average annual precipitation is 45 cm.  The soils at the Test Site are Ascalon sandy 

loam (fine-loamy, mixed, mesic Aridic Arugiustolls) with the parent materials generally derived from 

igneous and metamorphic rocks of the mountains and sedimentary rocks of the foothills (USDA 1983). A 

site evaluation (Lowe and Siegrist 2002) determined that the particle size distribution ranged from 59 to 

69% sand, 13 to 17% silt, and 18 to 24% clay, dry weight %.  Total organic matter ranged from 1.0% (dry 

wt. %) at 60 cm to 0.5% at 2.6 m below ground surface. The soil moisture content ranged from 6.4 to 

7.1% (dry wt. %). Cation exchange capacity ranged between 11.3 and 15.0 meq/100 g dry soil and was 

relatively constant across the site. The soil pH was 6.4.  Ground water was present in two of seven 

shallow boreholes around the site at 2.88 and 4.38 m below ground surface.    

 

3.2.1.2 Site Design  

 

The unit operations utilized during this research (Figure 4) have been previously described (Van 

Cuyk et al. 2005) and relevant design characteristics are summarized here.  Raw wastewater from the 8-

unit apartment building is first treated by two 5700 L (1500 gal) septic tanks in series, each with an 

average hydraulic residence time of 2 days.  The first tank is single-chambered and the second tank is 

double-chambered.  Effluent from the second chamber of the second tank is pumped approximately 160 

m uphill to the 2840 L (750 gal) septic tank effluent (STE) delivery basin at the Test Site.  Approximately 

1500 to 2500 L of effluent per day are delivered to the STE delivery basin to meet demand from all 

activities at the site, resulting in a typical hydraulic residence time in the STE delivery basin of less than 2 

days.   

From the STE delivery basin, STE is delivered by pump to six of the 18 soil test cells and serves 

as the influent for the textile filter unit and the membrane bioreactor.  The textile filter unit is an Orenco 

Systems, Inc. AdvanTex AX20 unit, of which 75% (approximately 1.4 m2) of the total textile pod area 

receives effluent.  Approximately 250 L/d of STE is pumped from the delivery basin to the 2870 L (750 

gal) recirculation basin.  A pump delivers effluent from the recirculation basin through a distribution 

network to the top of the hanging textile sheets.  Effluent percolates through the filter sheets, collects at 

the bottom of the pod, and returns to the recirculation basin by gravity flow.  An air vent is present to 
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allow passive air flow through the textile filter unit.  STE is delivered to the filter unit at a rate of 26 

L/min for 30 seconds every 13 minutes, resulting in a recirculation ratio of approximately 3:1.  The return 

pipe is outfitted with a splitter valve to redirect, when the recirculation basin is full, excess textile filter 

effluent (TFE) to the 340 L (90 gal) TFE delivery basin.  TFE is delivered by pump from the TFE 

delivery basin to six of the 18 soil test cells.  The hydraulic residence time in the TFE delivery basin is 

approximately 2.5 days.  The hydraulic residence time within engineered units is approximately 5 days 

prior to application to the STE soil test cells and approximately 13 days prior to application to the TFE 

soil test cells. 

While the HomeSpring membrane bioreactor (Zenon Environmental Corporation, Canada) was in 

operation (see Section 3.2.1.3), it processed STE from the STE delivery basin using a suspended growth 

biological reactor. Membrane bioreactor effluent (MBE) was delivered by pump to six of the 18 soil test 

cells from the 190 L (50 gal) MBE delivery basin.  

Eighteen in situ soil infiltration test cells were utilized to mimic a typical soil infiltration 

treatment unit in an OWTS.  The infiltrative surface of each test cell is approximately 1 m below ground 

surface, below which is intact native soil (Figure 5).  The infiltrative surface area of each test cell is 

approximately 2900 cm2, as defined by a steel culvert section (60 cm in diameter, 30 cm high) pressed a 

few centimeters into the infiltrative surface and covered with plywood.  The areas around and above the 

test cells were backfilled to the ground surface.  Three observation ports installed in each test cell allow 

access to the infiltrative surface from the ground surface for determination of infiltration rates, 

observation of effluent ponding heights, and access for future soil coring events.  

Effluent is delivered to the open infiltrative surface of each test cell from a delivery manifold.  

The three effluent types (STE, TFE, MBE) were designed to be delivered at two HLRs (2 and 8 cm/d) in 

triplicate (Table 6).  The delivery method is a 90 second dose once an hour over 16 hours each day.  

Approximately 360 mL (2 cm/d) and 1450 mL (8 cm/d) are delivered during each dose, resulting in 5.8 L 

(2 cm/d) and 23.3 L (8 cm/d) of total volume per day applied to each test cell.     

Twelve of the 18 test cells were outfitted with microporous stainless steel suction lysimeters 

(Model SW-074, Soil Measurement Systems, Tucson, Arizona) at 60 cm, 120 cm, and (in the 6 cells 

initially loaded at 8 cm/d) 240 cm below the infiltrative surface.  By applying a vacuum to the lysimeter 

apparatus, soil solution around each lysimeter was collected through the 0.2 μm nominal pore size of the 

lysimeter and associated tubing into a sampling flask at the ground surface.  A similar test cell (“Control”, 

see Figure 4 and Table 6) located in a nearby trench was useful for comparison purposes.  Since May 

2003, tap water from an on-site holding tank was delivered to the soil infiltrative surface at a HLR of 4 

cm/d, applied at a continuous rate of 22 mL/min over 16 hours each day. 
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Figure 5. Schematic of soil test cell installation. [from Van Cuyk et al. 2005] 
 

 

Table 6. Description of the soil test cells. [Event = sampling event in which test cell was utilized, T = 
tracer test (2004-2005), C = characterization (2007); “-“ = no lysimeter installed. 8,2 = HLR was reduced 

from 8 cm/d to 2 cm/d on 10/29/04.] 
 

ID Effluent 
applied 

Design 
HLR 

(cm/d) 

Lysimeter location 
Event 

60 cm 120 cm 240 cm 

TAC1 STE 2 - - - none 
TAC2 TFE 2 X X - T, C 
TAC3 MBE 2 X X - T  
TAC4 STE 8 X X X T, C 
TAC5 TFE 8 - - - none 
TAC6 MBE 8 X X X T  
TBC1  TFE 8,2 X X X T, C 
TBC2 MBE 8 - - - none 
TBC3  STE 8,2 X X X T, C 
TBC4 TFE 2 X X - T, C 
TBC5 MBE 2 - - - none  
TBC6 STE 2 X X - T, C 
TCC1 MBE 2 X X  T  
TCC2 STE 2 X X - T, C 
TCC3 TFE 2 - - - none 
TCC4 MBE 8 X X X T  
TCC5 STE 8 - - - none 
TCC6 TFE 8 X X X T, C 

Control Water 4 X X - T, C 
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Ground water quality was assessed through four monitoring wells (Figure 4) installed at the site 

along the assumed ground water flow path (generally southeast).  Monitoring well 1 is located within a 

companion set of soil test cells, with an average depth below the ground surface to water of 6.3 m.  Well 2 

is located approximately 8 to 24 m southeast of the soil test cells, and the depth to water averages 4.3 m.  

Well 3 is located approximately 15 to 25 m east of the test cells, and the depth to water averages 3.9 m.  

Well 4 is located approximately 30 to 45 m southeast of the test cells, and the depth to water averages 3.8 

m.   

 

3.2.1.3 Operationally-Induced Changes  

 

In February 2004, delivery of tap water to the 18 soil test cells began.  Baseline values for 

hydraulic performance were collected, including HLRs and infiltration rates.  The baseline infiltration 

rates of the 18 soil test cells generally ranged from 39 to 96 cm/d, with a few cells as low as 23 cm/d or as 

high as 158 cm/d.  Approximately three weeks after tap water delivery began, a tracer test was conducted 

(Conn 2008).  On April 6, 2004, delivery of the three types of effluent (STE, TFE, MBE) to the soil test 

cells began. Periodic monitoring of hydraulic conditions (infiltration rates at 6 months, 2 years, and 3 

years, weekly HLRs, and weekly ponding heights above the infiltrative surface) and wastewater and 

effluent characterization have been conducted by a team of researchers since operation began (Dimick 

2006, Van Cuyk et al. 2005).    

Within six months of operation, two test cells with low baseline infiltration rates (e.g. ~ 25 cm/d) 

receiving 8 cm/d of effluent (TBC1 and TBC3) had become ponded to the maximum height above the 

infiltrative surface.  The HLR was reduced to 2 cm/d on October 29, 2004 and has remained at that rate 

since. Therefore, the four STE and four TFE soil test cells outfitted with lysimeters have triplicate 

conditions of a 2 cm/d HLR and a single condition of an 8 cm/d HLR.   

The membrane bioreactor was in operation from April 2004 to May 2005, after which time a 

surrogate effluent was delivered to the six MBE soil test cells through November 2005.  At that time, 

tracer test sampling ceased and nothing has been applied to the MBE soil test cells since. A summary of 

relevant hydraulic conditions over time in the 13 lysimeter-equipped soil test cells is given in Table 7.  

Infiltration rates in test cells initially loaded at 2 cm/d remained sufficiently high to infiltrate all volume 

applied.  Infiltration rates decreased over time in test cells initially loaded at the higher loading rate (8 

cm/d) to less than the actual HLR, resulting in surface ponding and an actual infiltrated volume of less 

than the applied volume.  The estimated actual cumulative volume of effluent infiltrated into each test cell 

(Table 7) is useful for mass removal calculations during the tracer test (which ended November 2005) and 

during the characterization studies (conducted around 3 years of operation, April 2007). 
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3.2.2 Study Design 

 

Experiments were conducted between December 2006 and December 2007 at the Test Site to: 1) 

quantify the fate and variability of trace organic contaminants during treatment within a textile biofilter as 

compared to septic tank treatment alone, and 2) evaluate the fate of trace organic contaminants during soil 

treatment as affected by effluent type and HLR. 

A subset of the target compounds from the reconnaissance survey was selected for further study 

at the Mines Park Test Site: caffeine, EDTA, NTA, NP, NP1EO, NP1EC, and triclosan.  These 

compounds were commonly identified in operational OWTS wastewaters at measurable concentrations, 

had high recoveries through the lysimeter apparatus used at the Test Site, spanned a range of 

physicochemical properties and, therefore, had varying hypothesized behaviors during onsite treatment, 

and/or had known or potential adverse ecological effects.   

 To assess fate during engineered treatment, grab samples of nine tank or ponded effluents 

(locations 1, 2, 3, 4, 5, 6, 9, 19, and 21 – see Figure 4) were collected once a day (at 12:00) for seven 

consecutive days (11/30 – 12/6/2007).  An aliquot of the daily sample from each location was also 

combined into a composite sample.  The daily and composite samples were analyzed for target trace 

organic contaminants (Section 3.2.4).  The average concentrations at each location were compared to 

assess removal during septic tank and textile biofilter treatment.  Variability in trace organic contaminant 

concentrations in OWTS effluents over time was also assessed during this sampling effort.  Weekly 

variability was evaluated by comparing individual concentrations to each other and to the composite 

sample at each location.  To assess daily variability, grab samples of three tank effluents (locations 1, 4, 

and 6 – see Figure 4) were collected four times in one day (08:00, 12:00, 16:00, and 20:00 on 12/3/2007).  

To assess monthly variability, grab samples of seven effluents (locations 1, 2, 3, 4, 5, 6, and 9 – see 

Figure 4) were collected 9 to 13 times over 7 months (May through December 2007).  Results were also 

used to quantify typical effluent compositions applied to the soil test cells. 

A second major sampling effort was conducted between December 2006 and December 2007 to 

assess fate during soil treatment.  Sampling and analysis of conventional parameters and trace organic 

contaminants in soil solution was conducted utilizing nine soil test cells outfitted with lysimeters (4 

receiving STE, 4 receiving TFE, 1 receiving tap water).  Soil solution at 60 cm, 120 cm, and 240 cm (i.e. 

22 unique soil solution locations) were sampled two to three times over one year.  Composition was 

compared with effluent composition to assess soil treatment efficiency of bulk parameters and trace 

organic contaminants as affected by effluent type, HLR, and depth. 
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3.2.3 Sample Collection 

 

The sampling protocol was consistent throughout the characterization experiments at the Mines 

Park Test Site.  Grab samples of wastewater were collected from the clarified layer located at mid-depth 

(~0.5 m below the liquid surface) at the outlet of each tank (locations 1 through 8, see Figure 4) using a 

tank sampler.  Location 9 was collected at the end of the pressured drip irrigation system pipe network.  A 

90-second dose was collected through the delivery line tubing (locations 10 through 17) at the delivery 

apparatus (see Van Cuyk et al. 2005).  Ponded effluent (locations 18 through 21) was collected through an 

observation port using a tank sampler.  Soil solution (locations 22 through 53) was collected through the 

lysimeter apparatus after purging the system of at least 30 mL of solution (which required less than 1 day 

to over 3 days of purging time).  Collection of a sufficient volume of soil solution varied between test 

cells and depths, ranging from less than one day to over one week, and, in some locations, no volume was 

able to be collected.  To minimize sample degradation during extended sampling, collection flasks were 

chilled to 4 ºC in the field using cold packs.  A silicon stopper connected the tubing to the collection flask.  

Ground water samples were collected through the monitoring wells (locations 54 through 57) using 

dedicated Teflon tubing after purging the well with at least 3 pore volumes. 

Unfiltered samples were collected in amber glass bottles that had been pre-cleaned with soap, 

rinsed 3 times with tap water, rinsed 3 times with distilled water, and burned at 250 ºC for 12 hours.  

Samples from each location were split into up to four aliquots: one unpreserved for bulk parameter 

analysis, one unpreserved for trace organic contaminant analysis, one preserved with 1% v/v formalin 

(37% formaldehyde) for trace organic contaminant analysis, and one unpreserved for USGS non-target 

compound analysis.  Samples were stored at 4 ºC until analysis which generally was performed within 24 

h for bulk wastewater parameters, within 1 week for unpreserved trace organic contaminants, and within 

1 month for preserved trace organic contaminants.  A subset of samples analyzed for antibiotics were 

immediately shipped to the USGS laboratory. 

 

3.2.4 Analytical Procedures 

 

 Bulk parameters were analyzed following the same procedures as described in Section 3.1.3.  In 

addition, a subset of samples was acidified for analysis of major ions and trace metals by inductively 

coupled plasma atom emission spectrometry utilizing a Perkin-Elmer Optima 3000 as per manufacturer’s 

specifications.  Target trace organic contaminants were analyzed using two extraction methods- a solid-

phase extraction (SPE) and an acetyl propanol derivatization.  The derivatization method has been 

described in Section 3.1.3.  Caffeine, NP, NP1EO, and triclosan were isolated using SPE. SPE is 
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preferable over CLLE because less solvent is used, smaller sample volumes can be processed, and fewer 

emulsions are generated (Thurman and Mills 1998), though filtration may be necessary for particulate-

laden samples (i.e. raw wastewater).  A 50 mL unpreserved, unfiltered sample was spiked with surrogate 

standards (d9-caffeine, 4-n-nonylphenol, 4-n-NP1EO) and passed through a pre-conditioned cartridge 

(Waters tC18+, conditioned with dichloromethane, methanol, and distilled water) at a rate of 

approximately 5 mL/min.  Cartridges were rinsed with a 20% methanol / 80% distilled water solution to 

elute interfering polar compounds.  Target compounds were eluted with dichloromethane into anhydrous 

sodium sulfate, and passed over a sodium sulfate drying column to remove any residual water.  The 

extract was concentrated under nitrogen gas to 0.2 mL and transferred to a GC/MS vial for analysis by 

capillary column GC/MS.  Quantification by GC/MS has been described in Section 3.1.3.   

A subset of tank effluent and soil solution samples were analyzed for a suite of antibiotics 

including sulfamethoxazole by Mike Meyer at the USGS Environmental Geochemistry Group in 

Lawrence, Kansas using the methods described in Section 3.1.3 (Meyer et al. 2007).   

 

3.2.5 Quality Assurance  

 

On each day of sampling at the Mines Park Test Site, a randomly-selected sample was collected 

in duplicate to perform quality control analyses.  Most often field duplicate samples were tank effluents, 

but lysimeter samples were also used when there was sufficient volume.  Every set of 12 samples run 

simultaneously through the SPE vacuum apparatus included one laboratory blank, one laboratory 

duplicate, and one or both of a distilled water matrix spike and environmental matrix spike.  Laboratory 

blanks, replicates, and matrix spike samples comprised approximately 20% of derivatization analyses.  

Compounds were quantified from surrogate standards when they were commercially available.  

Additional quality assurance included solvent and reagent blanks and GC/MS replicate injections. 
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CHAPTER 4  

OCCURRENCE IN OWTS AND RECEIVING ENVIRONMENTS 

  

 Results from the reconnaissance field survey regarding the occurrence of bulk parameters and 

trace organic contaminants in OWTS and receiving environments are presented and discussed.  

 

4.1 Quality Assurance 

   

The wastewater matrix from onsite treatment systems is very concentrated and complex, and 

presents an analytical chemistry challenge. Within a given suite of trace organic contaminants, measured 

concentrations of individual compounds in a single analysis can vary by 2 to 5 orders of magnitude. 

Likewise, concentrations of trace organic contaminants between seemingly similar samples (i.e. single 

family residence, single tank systems) can differ by orders of magnitude. In this study, distilled water 

matrix spike recoveries averaged 119% (n=26 compounds, 2 analyses; relative standard deviation, 

RSD=37%). Wastewater sample matrix CLLE spike recoveries averaged 78% (n=25 compounds, 5 

analyses; RSD=43%), with the exception of caffeine and 4-methylphenol, which had erratic recoveries 

due to high matrix concentrations. For the derivatization method, recoveries averaged 97% (n=6 

compounds, 3 analyses; RSD=34%). Surrogate standard recoveries averaged 88% (n=90 analyses; 

RSD=55%) for d6-bisphenol A and 79% (n=90 analyses; RSD=29%) for 4-n-NP2EC. Field and 

laboratory CLLE replicate analysis had an average relative percent difference (RPD) of 54% (n=29 

compounds, 15 analyses; RSD=46%). Field and laboratory replicate analysis for the derivatization 

method had an average RPD of 22% (n=6 compounds, 12 analyses; RSD=35%).   The percent difference 

between field and laboratory duplicate samples (n varied from 1 to 15) averaged less than 25% for bulk 

parameters, with the exception of turbidity (46%, field duplicate n=1).  TDS values averaged 185 mg/L in 

the blank samples, indicating that additional rinsing of the filter paper is necessary (which was 

implemented in future studies).  TDS values in environmental samples in this study are likely lower than 

reported due to this error.   

Reporting levels for target compounds in the fall 2003 sampling were 0.5 µg/L, with the 

exception of NP-derived compounds, which were 2.0 µg/L due to the isomeric side chain. The reporting 

levels conservatively accounted for matrix limitations, and are 3 times the average concentration of any 

compounds detected in field or laboratory blanks. Reporting levels for NP1EC, NP2EC, EDTA, and 

caffeine in the spring 2004 sampling increased to 6.0, 5.0, 4.0, and 1.0 μg/L respectively to account for 

blank contamination.  Concentrations of bisphenol A in quality control samples were erratic, and results 
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are excluded.  Therefore, results are presented for 24 target compounds, where ∑NPEO = NP1EO + 

NP2EO + NP3EO + NP4EO, ∑NPEC = NP1EC + NP2EC + NP3EC + NP4EC, and ∑OPEO = OP1EO + 

OP2EO + OP3EO + OP4EO + OP5EO. 

Quality assurance for non-target compounds was performed at each USGS laboratory according 

to specific protocols.  Final data received at CSM had passed quality assurance and control requirements, 

or had been flagged and noted (e.g. when a value exceeded the standard curve or had been estimated due 

to analytical difficulty).   

 

4.2 Occurrence in OWTS 

 

4.2.1 Bulk Parameters and Target Trace Organic Contaminants 

 

Septic tank wastewater (Locations I or III, see Table 3 and Figure 3) from 26 OWTS was 

compared for bulk parameters and trace organic contaminants.  Analysis of bulk parameters revealed a 

wide range of compositions (Table 8) expected in systems treating wastewater from a wide variety of 

sources (i.e. single-family homes, restaurants, medical facilities).  Water temperature ranged from 5 ºC to 

30 ºC, with the warmest temperatures measured in wastewater from a restaurant (site 17).  pH values were 

typically from 6.5 to 7.5, with the exception of two sites. Wastewater from a bakery (site 19) had pH 

values ranging from 4.8 to 5.1 and wastewater from a veterinary hospital (site 30) had pH values ranging 

from 7.9 to 8.7.  Alkalinity ranged from 120 to 660 mg-CaCO3/L in wastewaters from all sources except 

from the bakery (20 to 100 mg-CaCO3/L) and the restaurant, site 17 (480 to 750 mg-CaCO3/L).    

Within the 26 OWTS compared, residential septic tank wastewater was relatively constant 

spatially (between different sites) and temporally (at the same site over time) regarding bulk parameters.  

Values of bulk parameters were similar to typical literature values for residential wastewater (Crites and 

Tchobanoglous 1998), such as an average cBOD5 of 290 mg/L and an average ammonia concentration of 

65 mg-N/L.  Non-residential septic tank wastewater showed higher spatial and temporal variability, often 

with higher levels of bulk parameters than residential septic tank wastewater.  For example, specific 

conductance ranged from 780 to 1600 μS/cm in residential septic tank wastewater and from 740 to 

3900 μS/cm in non-residential wastewater (Figure 6), with maximum values in some food establishments 

(sites 17 and 19), convenience stores (sites 20 and 21), and veterinary hospitals (sites 28, 29 and 30).  

Ammonia was also more variable and often higher in non-residential sources (4.0 to 210 mg-N/L) as 

compared to residential sources (38 to 99 mg-N/L), with maximum concentrations in wastewater from 

convenience stores (sites 20 and 21) and institutional sources such as schools, churches, and veterinary 

hospitals (sites 25, 26, 27 and 28).
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Figure 6. Specific conductance of 26 septic tank wastewaters in Colorado. [Numbers on x-axis refer to 

Site ID. Data is from Location I or III. See Table 3 and Figure 3.] 
 

Nineteen of the 24 target trace organic contaminants were detected in one or more samples from 

residential septic tank wastewater at concentrations ranging from <0.5 to 4500 μg/L (Table 9). Caffeine, 

coprostanol, cholesterol, and 4-methylphenol had concentrations exceeding the highest calibration 

standard (denoted as estimated concentration, “E”). Six compounds were detected in all of the anaerobic 

residential samples: caffeine, coprostanol, cholesterol, EDTA, 4-methylphenol, and ©NPEC. Five 

additional compounds had median concentrations above the reporting level: 4-ethylphenol, NTA, NP, 

©NPEO, and triclosan. The remaining 8 compounds that were detected occurred less frequently and at 

lower concentrations. Concentrations of several compounds were similar to previously reported results in 

septic tank wastewater: caffeine (<0.5 to 320 μg/L; Godfrey 2004, Hinkle et al. 2005, Swartz et al. 2006), 

triclosan (<1 to 5 μg/L; Hinkle et al. 2005), and NP (<26 to E210 μg/L; Rudel et al. 1998, Hinkle et al. 

2005, Swartz et al. 2006).  One of the multi-family residential tank-based systems (site 16) was analyzed 

by the USGS for non-target compounds. Elevated levels of acetaminophen (45 μg/L), 1,7-

dimethylxanthine (56 μg/L), and tetracycline (20 μg/L) were detected in the wastewater, as well as 19 

other non-target compounds, including methyl salicylate (1.6 μg/L), erythromycin (0.137 μg/L), 

carbamazepine (0.0048 μg/L), and anthraquinone (1.1 μg/L). 
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Table 9. Summary of combined fall 2003 and spring 2004 results for target trace organic contaminants in 
septic tank wastewater. [Residential n = 30, Non-residential n = 34. RL = reporting level, increased to 1.0 
(caffeine), 4.0 (EDTA), and 6.0 (∑NPEC) μg/L during spring 2004. Frequency of detection = number of 

samples with concentrations greater than RL/total number of samples (percent detection given in 
parentheses). For compounds with median concentrations <RL, median concentrations of detections are 
given in parentheses. Concentrations exceeded maximum value of standard curve for caffeine (25/87), 

cholesterol (72/90), coprostanol (74/90), and 4-methylphenol (61/77), and values are estimated as 
indicated by “E”.] 

 

Target Compounds RL 

(μg/L) 

Residential Non-residential 

Frequency 
of Detection 

(%) 

Max 
(μg/L) 

Median 

(μg/L) 

Frequency 
of Detection 
(%) 

Max 
(μg/L) 

Median 
(μg/L) 

2[3]-t-Butyl-4-
methoxyphenol 0.5 2/29 (7) 1.2 <RL (1.0) 2/34 (6) 1.1 <RL (0.89) 

4-t-Butylphenol  0.5 6/29 (21) 9.6 <RL (1.0) 11/34 (32) 6.4 <RL (1.1) 

Caffeine 0.5 30/30 (100) E450 15 34/34 (100) E9300 E110 

Cholesterol 0.5 30/30 (100) E700 E71 34/34 (100) E2200 E89 

Coprostanol 0.5 30/30 (100) E2800 E90 34/34 (100) E7100 E190 

1,2-Dichlorobenzene  0.5 0/30 (0) <RL <RL 0/34 (0) <RL <RL 

1,3-Dichlorobenzene  0.5 0/30 (0) <RL <RL 0/34 (0) <RL <RL 

1,4-Dichlorobenzene  0.5 4/30 (13) 2.1 <RL (1.2) 12/34 (35) 59 <RL (7.0) 
2,6-Di-t-butyl-1,4-
benzoquinone  0.5 4/29 (14) 3.1 <RL (2.3) 5/34 (15) 2.6 <RL (1.6) 

2,6-Di-t-butyl-4-
methylphenol 0.5 9/30 (30) 1.1 <RL (0.77) 10/34 (29) 12 <RL (1.7) 

2,6-Di-t-butylphenol  0.5 0/29 (0) <RL <RL 0/34 (0) <RL <RL 
Ethylenediaminetetraacetic 
acid  0.5 30/30 (100) 110 29 32/32 (100) 1700 100 

4-Ethylphenol  0.5 16/28 (57) 7.5 1.2 22/34 (65) 15 1.4 

4-Methylphenol  0.5 30/30 (100) E4500 E260 33/34 (97) E4500 E570 

Nitrilotriacetic acid  0.5 25/30 (83) 130 2.1 26/32 (81) 69 2.5 

NP  2 19/30 (63) 58 4.4 30/34 (88) 340 19 

∑NPEC  2.0 30/30 (100) 50 17 29/32 (91) 320 30 

∑NPEO 2 21/30 (70) 83 4.3 26/33 (79) 170 4.8 

4-n-Octylphenol  0.5 1/30 (3) 0.57 <RL (0.57) 4/33 (12) 3 <RL (2.0) 

4-t-Octylphenol  0.5 6/30 (20) 1.6 <RL (0.76) 21/34 (62) 220 1 

∑OPEO 0.5 0/30 (0) <RL <RL 6/33 (18) 160 <RL (4.9) 

4-Propylphenol  0.5 11/28 (39) 4 <RL (2.1) 13/34 (38) 2.6 <RL (1.0) 

4-t-Pentylphenol  0.5 0/29 (0) <RL <RL 2/34 (6) 0.66 <RL (0.60) 

Triclosan  0.5 17/30 (57) 9.3 0.83 26/33 (79) 82 4.2 
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Non-residential sources had similar occurrences of trace organic contaminants as the residential 

systems. Twelve compounds had median concentrations above the reporting level - the same 11 observed 

in residential systems plus 4-t-octylphenol. Median concentrations for 7 of the 12 compounds were 

greater (p<0.05, Mann-Whitney U-test) in non-residential than in residential systems (Table 9). Although 

median concentrations were below reporting levels, 1,4-dichlorobenzene and ©OPEO were detected in 

the non-residential systems at maximum concentrations of 59 and 160 ⎧g/L, but were infrequently 

detected in residential systems.  USGS analysis of non-target compounds in wastewater identified 1,7-

dimethylxanthine (21-49 μg/L), cimetidine (0.28-12 μg/L), ciprofloxacin (0.036-0.593 μg/L), cotinine 

(0.92–3.9 μg/L), norfloxacin (0.039–0.11 μg/L), ofloxacin (0.018-2.31 μg/L), and trimethoprim (0.005–

0.229 μg/L) in all 4 non-residential systems.  The results suggest that non-residential sources have unique 

compositions regarding trace organic contaminants, with higher concentrations and more compounds than 

in residential systems. 

Variability in occurrence and concentrations of trace organic contaminants and bulk parameters in 

the OWTS studied was likely due to differences in water- and chemical-using activities at the source 

contributing to the wastewater (Figure 7).   Typical water use for a residential source is 30% toilets, 30% 

dish and clothes washing, 20% bathing, 10% faucets, and 10% miscellaneous (Crites and Tchobanoglous 

1998), resulting in a dilute wastewater composition composed of a mix of human waste, kitchen waste, 

and consumer product chemicals. Biogenic (coprostanol) and anthropogenic compounds (EDTA and 

©NPEC) were detected in all of the residential systems. 

In contrast to residential systems, retail centers discharge wastewater from multiple sources to the 

OWTS. Commercial effluent composition can vary over time as changes in business practices affect 

water and chemical use.  For example, differences in EDTA and triclosan concentrations in one of the 

retail centers between the fall 2003 and spring 2004 samplings may be explained by the re-opening of a 

restaurant during the winter of 2003. Compound occurrence in institutional sources also was variable, and 

can be attributed to changes in activities. The fall 2003 school samples were collected during summer 

vacation while the spring 2004 sample was collected while school was in session. The spring samples had 

greater concentrations of caffeine, coprostanol, and triclosan. 
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 Water use at convenience stores differs from residential sources, and most of the wastewater 

entering onsite treatment systems originates in public restrooms and sinks. This difference in water use is 

reflected in the results for the two convenience stores (Figure 7), which had high concentrations of  

nitrogen as ammonia (fecal matter), triclosan (hand soaps), 1,4-dichlorobenzene (urinal deodorant), and 

©NPEC (cleaning products). Proportional use of cleaning products is more intensive in commercial than 

in residential activities. The elevated concentrations (E2500-E5800 μg/L) of caffeine in convenience 

stores can be explained by inputs from both human excretion and disposal of unconsumed caffeinated 

beverages. For example, approximately 3 pots of coffee (2.5 L per pot) poured down the drain each day 

would result in wastewater concentrations in the range of those observed (assuming 500 mg/L caffeine 

and water consumption of 1500 L/day). The convenience store wastewater composition also reflects the 

large and diverse population (up to 1000 people/d) visiting the stores. The highest concentrations of 15 

pharmaceuticals and antibiotics (analyzed by the USGS), including cimetidine and ranitidine (antacids), 

ofloxacin and sulfamethoxazole (antibiotics), and gemfibrozil (antihyperlipidemic), were detected in the 

convenience store wastewater. 

Veterinary hospitals use a high proportion of their water in washing and disinfecting practices, 

resulting in a different trace organic contaminant distribution than the other sites. In addition to NP, 

©NPEO, and ©NPEC, the nonionic surfactant metabolites 4-t-octylphenol and ©OPEO were detected in 

all samples from veterinary hospitals, but only 48% (4-t-octylphenol) and 2% (©OPEO) of the other sites. 

Concentrations of both compounds in wastewater from one veterinary hospital were 20 times the 

concentrations in other sources. 

Wastewater from food establishments had high concentrations of NP and ©NPEO. 

Concentrations of ©NPEO were higher (paired t-test, p<0.0001) during the spring than fall. Possible 

factors contributing to this variability include seasonal variations and inherent variability within these 

systems due to chemical and water fluxes associated with intensive, time-regulated business practices. 

The results suggest that wastewater from other institutional sources, such as human medical facilities, also 

will have compositions that differ from residential wastewater. Knowledge of the source, water use, and 

chemical use activities contributing to wastewater flow should be considered during onsite treatment 

system design and operation to ensure proper treatment. 
 

4.2.2 Semi-Quantifiable Compounds 

 

The target compounds may represent only a fraction of the total organic carbon (TOC) in a 

wastewater.  TOC, which ranged from 21 to 340 mg/L in septic tank wastewater (Table 8), is an 

aggregate measure of proteins, carbohydrates, oils and fats, and urea in addition to synthetic organic 
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molecules (Crites and Tchobanoglous 1998).  Full scan chromatograms of wastewaters were assessed to 

identify the concentrations of target compounds relative to other organic compounds contributing to the 

TOC in septic tank wastewater.  Table 10 shows the distribution of the 20 largest peaks in five 

representative wastewaters (Figure 8) as three categories: fatty acids, sterols, and consumer product 

chemicals.  Regardless of wastewater source, 7 to 14 of the 20 largest peaks in all five septic tank 

wastewater samples were fatty acids, such as octadecanoic acid and benzeneacetic acid, while 0 to 4 

peaks were identified as sterols, such as cholesterol and coprostanol, and 2 to 11 peaks were identified as 

consumer product chemicals, such as surfactants and stimulants. 

 
Table 10. Distribution of the 20 largest chromatographic peaks in five onsite system wastewaters and the 

consumer product chemicals identified as one of the 50 largest peaks. [FA- fatty acids; ST- sterol; CP- 
consumer product chemicals. Unidentifiable peaks: multi-family home=1, convenience store=3, 

restaurant=2, veterinary hospital=1.] 
 

Source, Site ID 
# in Largest 20 

Peaks Consumer Product Chemicals Identified as one of the 
Largest 50 Chromatographic Peaks (Rank) FA ST CP 

Multi-family 
home, 16 11 2 6 

4-Methylphenol (4), fragrances (5,9,16,27,40,44,48), 
surfactant amine (13), caffeine (18), cyclic octaatomic sulfur 
(36), 5-methyl-1H-benzotriazole (39) 

Elementary 
school, 26 14 4 2 

4-Methylphenol (8), chloroxylenol (18), fragrances (25,28), 
5-methyl-1H-benzotriazole (27), caffeine (42), ibuprofen 
(50) 

Convenience 
store, 20 12 2 3 Caffeine (9), 4-methylphenol (11), surfactant amine (19), 

fragrance (37) 

Restaurant, 17 14 0 4 
Cyclic octaatomic sulfur (4), 4-methylphenol (7), caffeine 
(10), 5-methyl-1H-benzotriazole (18), NP (23), 
chloroxylenol (28), 4-t-octylphenol (36) 

Veterinary 
hospital, 29 7 1 11 

Surfactant amines (1,4,6,16,18), 4-methylphenol (2), 
fragrances (7,13,15,19,22,23,26,28,32,44,47), caffeine (16), 
methyl salicylate (37), methylparaben (38), 
octylphenolethoxylate (46) 

 

The results suggest that the majority of organic carbon present in a septic tank wastewater is from 

fatty acids, likely originating from human and food waste.  While consumer product chemicals typically 

comprise a small fraction of TOC in a sample (here: 0.1 to 7 wt. % of the TOC), they may represent the 

largest risk regarding exposure to receiving environments.  A number of consumer product chemicals 

were semi-quantitatively identified in the 5 representative wastewaters (Table 10), some of which were 

identified during target compound analysis (e.g. caffeine and 4-methylphenol) as well as additional 

compounds.  Cleaning product chemicals such as surfactant amines, NP, 4-t-octylphenol, and 

octylphenolethoxylate occurred frequently in veterinary hospital, restaurant, multi-family home, and 

convenience store wastewaters.  Various fragrances were commonly detected, and were most frequent in 

the veterinary hospital and multi-family home wastewaters.  An antimicrobial agent, chloroxylenol, used 

in treatment shampoos and antiseptic soaps and lotions, was identified in elementary school and 
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restaurant wastewaters.  Methylparaben is a preservative and fungicide often used in deodorants and 

shampoos and was found in the veterinary hospital wastewater.  The anticorrosive compound 5-methyl-

1H-benzotriazole was found in multi-family home, elementary school, and restaurant wastewaters.  The 

analgesic ibuprofen was identified in the elementary school.  The source of elemental sulfur (cyclic 

octaatomic sulfur) is unknown and hypothesized to be present in wastewater from the oxidation of 

hydrogen sulfide by anaerobic microbes.  The results indicate that a number of trace organic contaminants 

not quantified as target compounds are also present in septic tank wastewaters from residential and non-

residential sources. 

 

 4.3 Occurrence in Receiving Environments 

 

OWTS effluent is assimilated by the receiving environment, which may be local ground water or 

surface water.  Ancillary samples from 9 supply wells (8 ground water sources and 1 surface water 

source) and 9 surface waters in OWTS-reliant regions in Colorado were analyzed for bulk parameters and 

trace organic contaminants.  The water supply at site 27 was not being used as a drinking water source at 

the time of the study due to known contamination of chloride and potential contamination by other 

analytes.  Specific conductance ranged from 6900 to 9400 μS/cm and TDS values were over 6000 mg/L 

at this site (Table 11).  The water supply at a restaurant (site 17) also had elevated levels of specific 

conductance (3000 μS/cm) and TDS (2100 to 2300 mg/L) as compared to the other sites (specific 

conductance = 220 to 1100 μS/cm, TDS = 170 to 710 mg/L).  The restaurant water was treated by 

filtration and chlorination prior to use.  Oxygen demand and nutrient levels were typically near or below 

the reporting level in all receiving water samples.  Total organic carbon values averaged less than 4 mg/L.  

The dissolved oxygen concentrations in surface waters ranged from 5.99 to 8.79 mg/L, indicating well 

aerated waters.  The results indicate minimal anthropogenic impact as revealed by bulk parameters in the 

surface waters and supply wells sampled in this study.       
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Target and semi-quantifiable trace organic contaminants were detected infrequently at low 

concentrations in receiving environments as compared to septic tank wastewaters.  In the nine surface 

waters sampled in the study, only 1 of the 24 target trace organic contaminants, coprostanol, was 

identified (Table 12).  The surface water sites are located in regions which rely on OWTS for wastewater 

treatment, but are not directly impacted by wastewater from municipal wastewater treatment plant 

discharge.  Instead, treated OWTS effluent percolates through the soil until it reaches the water table and 

recharges the ground water which may, in turn, recharge the local surface water.  Surface water may also 

be impacted by runoff from agriculture and development.  Eight target compounds were detected in 

supply wells at concentrations from the reporting level to 19 μg/L (Table 12).  These included caffeine, 

cholesterol, coprostanol, 2-6-di-t-butyl-1,4-benzoquinone, EDTA, 4-methylphenol, NP, and ∑NPEC.  

Seven of the eight compounds were detected in only one of the two sampling events at a specific location.  

However, one well serving a veterinary hospital had elevated concentrations of EDTA during both 

sampling events (11 and 19 μg/L) as well as low levels of caffeine, coprostanol, cholesterol, and 2,6-di-t-

butyl-1,4-benzoquinone during one sampling event.  Two barbiturates commonly used for veterinary 

anesthesia and/or euthanasia, pentobarbital and secobarbital, were semi-quantitatively identified in the 

same well.  The barbiturates were not identified in the wastewater on the same property.  In a residential 

well, EDTA and the endocrine disruptor ∑NPEC were both identified.  The disinfectant and herbicide 

2,4,6-trichlorophenol was semi-quantitatively identified in a sample from an elementary school drinking 

water source. 

Eight of the sites are drinking water wells located up gradient on the same property as an OWTS 

included in the study.  In the OWTS-reliant developments, contamination of these wells could indicate 

regional impacts to the ground water from treated effluent recharge.  Conversely, contamination may 

originate from the supply infrastructure (i.e. pumps, pipes, faucets, etc.) since the samples were collected 

at the point of use (i.e. indoor or outdoor faucet).  These limited results represent an ancillary effort and 

further sampling should be conducted to assess the occurrence of trace organic contaminants in receiving 

waters. 
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Table 12. Summary of combined fall 2003 and spring 2004 results for trace organic contaminants in 
receiving environments. [RL = reporting level, increased to 1.0 (caffeine, 4.0 (EDTA), and 6.0 (∑NPEC) 

μg/L in spring 2004. Frequency of detection = number of samples with concentrations greater than 
RL/total number of samples (percent detection given in parentheses). For compounds with median 

concentrations <RL, median concentrations of detections are given in parentheses.] 
 

Target Compounds RL 
(μg/L) 

Ground water Surface water 

Frequency 
of 
Detection 
(%) 

Max 
(μg/L) 

Median 
(μg/L) 

Frequency 
of 
Detection 
(%) 

Max 
(μg/L) 

Median 
(μg/L) 

2[3]-t-Butyl-4-methoxyphenol 0.5 0/18 (0) <RL <RL   0/17 (0) <RL <RL 

4-t-Butylphenol  0.5 0/18 (0) <RL <RL   0/17 (0) <RL <RL 

Caffeine  0.5 2/18 (11) 1.6 <RL (1.1) 0/17 (0) <RL <RL 

Cholesterol  0.5 4/18 (22) 3.5 <RL (1.7) 0/17 (0) <RL <RL 

Coprostanol  0.5 4/20 (25) 10 <RL (3.4) 1/17 (6) 0.51 <RL (0.51) 

1,2-Dichlorobenzene  0.5 0/18 (0) <RL <RL   0/17 (0) <RL <RL 

1,3-Dichlorobenzene  0.5 0/18 (0) <RL <RL   0/17 (0) <RL <RL 

1,4-Dichlorobenzene  0.5 0/18 (0) <RL <RL   0/17 (0) <RL <RL 

2,6-Di-t-butyl-1,4-benzoquinone  0.5 3/18 (17) 1.8 <RL (0.88) 0/17 (0) <RL <RL 

2,6-Di-t-butyl-4-methylphenol 0.5 0/18 (0) <RL <RL   0/17 (0) <RL <RL 

2,6-Di-t-butylphenol  0.5 0/18 (0) <RL <RL   0/17 (0) <RL <RL 

Ethylenediaminetetraacetic acid  0.5 4/18 (22) 19 <RL (8.9) 0/18 (0) <RL <RL 

4-Ethylphenol  0.5 0/18 (0) <RL <RL   0/17 (0) <RL <RL 

4-Methylphenol  0.5 1/18 (6) 0.53 <RL (0.53) 0/17 (0) <RL <RL 

Nitrilotriacetic acid  0.5 0/18 (0) <RL <RL   0/18 (0) <RL <RL 

NP  2 1/18 (6) 3.0 <RL (3.0) 0/17 (0) <RL <RL 

∑NPEC 2.0 1/18 (6) 2.4 <RL (2.4) 0/18 (0) <RL <RL 

∑NPEO 2 0/18 (0) <RL <RL   0/17 (0) <RL <RL 

4-n-Octylphenol  0.5 0/18 (0) <RL <RL   0/17 (0) <RL <RL 

4-t-Octylphenol  0.5 0/18 (0) <RL <RL   0/17 (0) <RL <RL 

∑OPEO 0.5 0/18 (0) <RL <RL   0/17 (0) <RL <RL 

4-Propylphenol  0.5 0/18 (0) <RL <RL   0/17 (0) <RL <RL 

4-t-Pentylphenol  0.5 0/18 (0) <RL <RL   0/17 (0) <RL <RL 

Triclosan  0.5 0/18 (0) <RL <RL   0/17 (0) <RL <RL 
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CHAPTER 5 

FATE DURING ENGINEERED TREATMENT 

 

Although the nature of the source is a primary factor contributing to wastewater composition 

(Chapter 4), the type of engineered treatment also contributes to variability of occurrence and 

concentration of bulk parameters and trace organic contaminants in onsite systems.  Chapter 5 presents 

results from the reconnaissance survey and experiments conducted at the Mines Park Test Site regarding 

fate during treatment within engineered unit operations.     

 

5.1 Operational Field Systems 

 

At a subset of the 30 OWTS included in the reconnaissance survey (Chapter 4), additional 

wastewater samples within downstream unit operations were collected to assess removal of bulk 

parameters and trace organic contaminants during engineered treatment.  The most common treatment 

system is a tank or series of tanks for settling of solids, sorption, and anaerobic biotransformation prior to 

discharge to an aerobic soil treatment unit (Figure 3A). At 7 of the sites, wastewater from the anaerobic 

tank was recirculated through aerobic textile-media biofilters (Figure 3B), which enhance treatment 

through additional sorption, volatilization, and aerobic biotransformation. One system used a subsurface-

flow constructed wetland (mixed anaerobic/aerobic environment) for additional treatment (Figure 3C). 

Wetlands have the potential for additional removal by rhizosphere interactions. Estimated removals were 

calculated as the difference between influent concentrations (Figure 3, location I) and effluent 

concentrations (Figure 3, locations III, IV, or VI) and were compared for the three treatment types. The 

tank- and biofilter-based systems with paired influent and effluent samples had similar HRTs (4 to 13 d), 

and the wetland-based system had a HRT of 22 d (Table 3). Grab samples of influent and effluent 

wastewaters were collected at the same time, and variation in chemical use over the HRTs of the systems 

adds uncertainty to the removal results. 

 

5.1.1 Bulk Parameters 

 

While grab samples have their limitations, results for specific conductance and TDS (Figure 8) 

show reproducibility between sampling events and between influent and effluent wastewater in anaerobic 

tank-based systems.  The average apparent removal of specific conductance observed in the biofilter-

based (30 ± 9% removal) and wetland-based (13% removal) systems compared to the tank-based systems 
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(0.9 ± 5% removal) reflects their increased hydraulic complexity.  Average phosphorus removal (Figure 

8) was less than or equal to 20% for all three types of engineered treatment units (tank = 20 ± 27%, 

biofilter = 10 ± 18%, wetland = 19% removal).  Low removal is typical in engineered treatment units that 

are not specifically designed for phosphorus removal (e.g. by inorganic sorption or precipitation). 

Engineered treatment units such as recirculating textile biofilters and constructed wetlands can 

provide enhanced treatment beyond that of a conventional septic tank for many bulk wastewater 

parameters such as cBOD, TOC, and ammonia (Figure 8).  Removal of cBOD during tank-based systems 

was variable (removal = 23 ± 35%), while biofilter-based systems had high and consistent removal 

(removal = 90 ± 7%).  Similarly, average apparent removal of TOC during biofilter treatment was 70 ± 

18%, while septic tank treatment alone was lower and more variable (removal = 22 ± 34%).  The single 

wetland-based system appeared to provide treatment intermediate between tank- and biofilter-based 

systems for cBOD (removal = 56%) and high removal of TOC (removal = 90%). 

Ammonia concentrations ranged from 4 to 200 mg-N/L in anaerobic wastewaters and 0.1 to 100 

mg-N/L in aerobic wastewaters.  Nitrate concentrations were low in all wastewaters, ranging from 0.1 to 

14 mg-N/L and 0.1 to 4.5 mg-N/L in anaerobic and aerobic wastewaters, respectively.  The occurrence of 

relatively high concentrations of nitrate (e.g. 14 mg-N/L) in some anaerobic wastewaters and ammonia 

(e.g. 100 mg-N/L) in some aerobic wastewaters suggests these wastewaters have high inputs of all 

nitrogen species and/or may have limiting conditions for complete conversion from one species to 

another.  Fate of nitrogen species during biofilter treatment provides evidence for conversion and removal 

of nitrogen.  Average removal of ammonia-N was 59 ± 23%, while nitrate-N concentrations increased 

slightly from influent to effluent (average increase = 2 mg-N/L), and total nitrogen removal averaged 48 ± 

11%.  As expected, in systems employing septic tank treatment alone, removal of ammonia-N was low (9 

± 15%), nitrate-N concentrations were similar between influent and effluent (average decrease of 1.4 mg-

N/L), and total nitrogen removal was low and variable (removal = 18 ± 23%).  The single wetland-based 

system appeared to provide treatment intermediate between tank- and biofilter-based systems for 

ammonia (removal = 33%). 
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5.1.2 Trace Organic Contaminants 

 
Biofilter-based systems also had greater removal efficiencies for many trace organic 

contaminants than tank-based systems (Figure 9), though removal varied based on physicochemical 

properties and removal mechanisms employed within the treatment units. For example, caffeine is 

aerobically biotransformed, which may explain its enhanced removal during textile biofilter (84 ± 19% 

removal) and constructed wetland (95% removal) treatment as compared to septic tank treatment alone 

(18 ± 23% removal).  Biofilter treatment resulted in a 98% reduction in 1,4-dichlorobenzene as compared 

to 40 ± 26% removal in tank-based treatment. Volatilization may be an effective removal mechanism 

during biofilter treatment for compounds with large Henry’s Law constants (KH) due to increased air-

water exchange and enhanced turbulence. The two-film theory of volatilization was used to describe the 

loss of trace organic contaminants across the air/water boundary layer (Schwarzenbach et al. 2003, Keefe 

et al. 2004). Volatile organic compounds (VOCs) such as 1,4-dichlorobenzene (KH = 2.40 atm-L/mol, 

Keefe et al. 2004), have estimated volatilization half-lives (t1/2) on the order of 4 days in tank-based 

systems, which is similar to the HRTs (Table 3). Earlier studies on the fate of VOCs during tank-based 

treatment indicated little removal (DeWalle et al. 1980). In contrast, the estimated biofilter-based 

volatilization t1/2 for 1,4-dichlorobenzene was <12 h. Other VOCs also could be effectively removed 

during biofilter-based treatment. In contrast, nonvolatile compounds such as triclosan (KH = 5 x 10-4 atm-

L/mol, Lindström et al. 2002) have estimated volatilization t1/2 of >22 d in biofilter-based systems and >1 

yr in tank-based systems, which is much longer than the HRTs.  

 Removal of nonvolatile trace organic contaminants during engineered treatment can occur by 

biotransformation and sorption. Sorption of trace organic contaminants to solids with subsequent removal 

by sedimentation or filtration are effective removal mechanisms in tank- and biofilter-based systems for 

compounds with large octanol/water partition coefficients (Kow) such as triclosan (log Kow = 4.35, 

Lindström et al. 2002) and NP (log Kow = 4.70, Barber et al. 1988). Removal of triclosan in tank- and 

wetland-based systems (tank = 38 ± 22% removal; wetland = 39% removal) may be attributed to sorption. 

In filter-based systems, additional triclosan removal (92 ± 1%) can be attributed to aerobic 

biotransformation (Lindström et al. 2002) and filtration of particulates containing sorbed triclosan.   
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Theoretical distribution coefficients (KD = solids concentration/water concentration) were calculated for 

triclosan (KD = 1200 L/kg) and NP (KD = 2500 L/kg) based on (Chiou 2002)  

 

KD = 0.512 foc (Kow) 0.904 
   (5-1) 

 

where foc is the fraction of organic carbon in the solids (kg organic carbon/kg solids) and is estimated at 

0.27 for septic tank solids (Parnaudeau et al. 2004). Analysis of trace organic contaminants in the tank 

solids (Conn 2008) indicated orders of magnitude greater concentrations than in the wastewater for 

triclosan (maximum = 19,000 μg/kg) and NP (maximum = 1,800,000 μg/kg). The measured KD values 

ranged from 1200 to 9500 L/kg for triclosan and 3,100 to 82,000 L/kg for NP. In contrast, 4-

methylphenol, which is less hydrophobic (log Kow = 1.93, Schwarzenbach et al. 2003), had a calculated 

KD of 8 L/kg and measured KD values of 1 to 110 L/kg. Measured KD values in onsite treatment systems 

will vary as a function of the liquid/solid ratio, solids characteristics, and source water composition.  

The fate of the metal-chelating agents EDTA and NTA illustrate the role of biotransformation 

during onsite treatment because EDTA is resistant to sorption and biotransformation whereas NTA is 

resistant to sorption but is readily biotransformed under aerobic conditions (Alder et al. 1990). Removal 

of EDTA was negligible in both tank-and biofilter-based systems (Figure 9, tank = 12 ± 12% removal, 

biofilter = -6 ± 8% removal). The apparent negative removal in biofilter-based systems is likely due to 

increased hydraulic complexity and deviation from the assumption of uniform mixing, as also was 

observed for specific conductance. Removal of NTA in tank-based systems was negligible (-8 ± 42% 

removal), whereas removal in biofilter-based systems was 76 ± 29%. Selective removal of NTA relative 

to EDTA in the biofilter based systems is attributed to aerobic biotransformation.  

The ultimate fate of trace organic contaminants is complicated by the production of metabolites 

as parent compounds are transformed.  For example, the metabolites NP, ∑NPEO, and ∑NPEC are 

formed by biotransformation of the parent nonylphenolethoxylate (NPE) surfactants which have 10 to 20 

ethoxylate units (Ahel et al. 1994). Over 95% of the wastewater samples had detectable NPE degradation 

products, with concentrations ranging from 2 to 500 μg/L. Although the parent NPE compounds were not 

measured in this study, they contribute 80% of the total NPE in primary WWTP effluent (Ahel et al. 

1994) which is similar to anaerobic tank effluent. In the anaerobic tank-based systems, the ratio of NP: 

∑NPEO: ∑NPEC (1.0:1.5:3.0) was relatively constant between influent and effluent (Figure 9), 

suggesting little transformation during tank residence. Aerobic biofilter-treatment shifted the NP: 

∑NPEO: ∑NPEC ratio (1.0:0.7:30) to a predominance of ∑NPEC in the effluent. Both ∑NPEC and 

∑NPEO are intermediates that continue to degrade to form NP, which in turn sorbs to biosolids. Because 
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of the greater water solubility of the acidic ∑NPEC compounds relative to NP, they are the predominant 

NPE degradates in the aerobic effluents. Apparent production of NP in the wetland system may be due to 

conversion from ∑NPEC and ∑NPEO in the mixed redox environment. 

 

5.2 Mines Park Test Site 

 

 To confirm the results of the field sampling effort, controlled field-scale experiments examining 

the fate of trace organic contaminants during treatment in engineered unit operations at the Mines Park 

Test Site were conducted, and are presented and discussed here.  First, quality assurance results for all 

Mines Park sampling (i.e. engineered treatment and vadose zone sampling) for bulk parameters and trace 

organic contaminants are presented, followed by results and discussion of temporal variability within the 

engineered units at the Test Site. 

 

5.2.1 Quality Assurance and Temporal Variability 

 

Bulk parameters were not measured above the reporting level in any field and laboratory distilled 

water samples.  The percent difference between laboratory duplicate samples (n varied between 1 and 26) 

averaged less than 25% for all parameters (pH, DOC, UV254, COD, TN, NO3
-, TP, BOD, TS, and TSS) 

except for ammonia (average difference = 31%).     

Use of SPE and surrogate compounds for quantification improved method performance as 

compared to the CLLE method.  For the seven compounds that were the focus of the Mines Park 

experimentation (caffeine, EDTA, NP, NP1EC, NP2EC, NTA, and triclosan), average distilled water 

matrix spike recoveries ranged from 72 to 107% (n=8 to 12).  Average environmental sample matrix 

spike recoveries ranged from 93 to 114% (n=8 to 14), with the exception of NP1EC (138%, n=4).  

Average percent difference between field replicates and laboratory replicates ranged from 5 to 56% and 5 

to 25%, respectively.  Reporting levels were 0.02 μg/L for NTA, 0.1 μg/L for EDTA, 0.2 μg/L for 

caffeine and triclosan, 1 μg/L for NP1EC and NP1EO due to the isomeric side chain, and 2 μg/L for NP 

due to consistent blank contamination, which may be inherently present in the multi-use laboratory.   

 The variability of bulk parameters during engineered treatment at the Mines Park Test Site has 

been previously investigated (Lowe et al. 2008, Small Flows 2008b, Rothe 2006, Van Cuyk et al. 2005) 

and results suggest that a grab sample is representative of effluent quality regarding bulk wastewater 

parameters.  Long-term average values for bulk parameters in locations 1, 3, 4 and 6 (Table 13) show 

some variability as expected due to changes in source and site characteristics over five years of operation.  
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However, average values of wastewater from locations 1, 3, and 4 are within typical concentration ranges 

for residential STE (Lowe et al. 2006, Crites and Tchobanoglous 1998). 

 

Table 13. Long-term average and variability of bulk parameters in Mines Park engineered 
treatment unit effluents. [AVG, average value; RSD, relative standard deviation = standard deviation / 

average * 100; N = number of samples. See Table 4 for parameter descriptions and units.] 
 

Sample 
location: Tank 1 

Tank 2 
compartment 2 STE TFE 

Figure 4 ID 1 3 4 6 
Reference: Lowe et al. 2008 Lowe et al. 2008 Small Flows 2008b Small Flows 2008b 

                   
Parameter AVG RSD N AVG RSD N AVG RSD N AVG RSD N 
TS 440 24 5 420 26 4 430 76 126 360 28 80 
TSS 74 35 5 51 31 4 43 80 87 6 96 40 
pH 7.13 2 6 7.32 2 5 7.20 3 155 6.30 17 97 
Alkalinity 230 22 6 220 26 5 260 21 151 75 105 81 
Turbidity 240 33 5 260 43 5 140 41 69 15 92 67 
TP 20 37 2 18 24 2 24 34 147 21 26 90 
COD 370 39 5 350 18 5 260 41 151 45 59 94 
BOD 230 36 4 1880 42 4 160 53 106 14 78 67 
TN 58 18 5 52 33 5 60 44 147 36 37 95 
NO3

- 0.2 141 2 0.2 141 2 1.8 74 149 16 47 93 
NH3 53 28 5 50 25 5 55 31 143 16 100 91 
DOC NM NM NM NM NM NM 38 43 34 11 46 13 

 

     

In general, the temporal variability of trace organic contaminants in engineered treatment unit 

effluents is greatest in the first treatment unit (e.g. location 1) and decreases in downstream effluents 

(Figure 10).  For example, the RSD (%) between four samples collected throughout one day for target 

trace organic contaminants ranged from 9 to 38% in wastewater from the first septic tank (location 1), 5 

to 20% in STE (location 4), and < 1 to 10% in TFE (location 6).  Samples collected over one week 

showed a similar trend of decreasing variability with increasing distance from the source.  For example, 

the RSD of EDTA concentrations in seven consecutive daily samples ranged from 13 to 25% in locations 

1, 2 and 3, and ranged from 3 and 8% in all locations further downstream (locations 4, 5, 6, 9, 19, and 21).  

Concentrations in daily grab samples differed from concentrations in the weekly composite sample by an 

average of 17%, indicating that a grab sample is fairly representative of effluent quality regarding trace 

organic contaminants.  Overall, the daily and weekly RSD values were less than 30% (except in location 

1: RSD < 40%), suggesting relatively consistent effluent quality regarding trace organic contaminants 

within these time periods. 

 

 



 54

 

 
 

Figure 10. Daily (A), weekly (B), and monthly (C) variability of EDTA wastewater concentrations in 
three tanks at the Mines Park Test Site. [% Difference = percent difference from average during each 

experiment. NM = not measured.] 



 55

 
Greater variability was observed between samples collected over seven months for all compounds 

at all sample locations (RSD = 8 to >100%, Figure 10).  This is likely due to a combination of varying 

source activities over time, changes in treatment efficiencies due to climatic differences, and analytical 

variability.  Different water- and chemical-using activities are expected at the Mines Park apartment 

complex during school months as compared to summer and winter vacation months.  Lower temperatures 

in the winter may affect treatment efficiencies (i.e. volatilization and biotransformation) of trace organic 

contaminants and of bulk parameters that may impact the treatment efficiency of trace organic 

contaminants.  Also, there is increased variability between samples analyzed at different times in the lab 

due to factors such as varying lots of extraction cartridges, different standard curves, and varying GC/MS 

conditions.  

 

5.2.2 Fate during Engineered Treatment 

 

The fate of bulk parameters during treatment within engineered unit operations at the Mines Park 

Test Site has been previously investigated (Lowe et al. 2008, Small Flows 2008b, Rothe 2006, Van Cuyk 

et al. 2005) and results are summarized here.  Treatment of bulk parameters (Small Flows 2008b) was 

negligible (<5%) during tank-based treatment (i.e. between locations 1 and 4) for alkalinity, TS, TP, TN, 

NO3
-, and NH3, while some removal of TSS, turbidity, cBOD, and COD occurred (removal = 28 to 42%).  

Treatment within the textile biofilter unit produced a higher quality effluent than STE regarding cBOD, 

COD, DOC, and TN, while phosphorus was unchanged (Van Cuyk et al. 2005).  These results are similar 

to findings from the reconnaissance survey. 

 The fate of trace organic contaminants during treatment within engineered unit operations varied 

by physicochemical properties such as hydrophobicity, volatility, and aerobic biodegradability of the 

target compounds.  The fate of caffeine and triclosan during engineered treatment at the Mines Park Test 

Site (Figure 11) was similar to observations during the reconnaissance survey.  Seventeen percent 

removal of caffeine was observed during tank-based treatment at the Test Site (e.g. between locations 1 

and 3, see Figure 4), which is similar to removal during the reconnaissance survey (average removal = 18 

± 23%).  Caffeine concentrations were reduced to near the reporting level (97% removal) during biofilter 

treatment at the site (e.g. between locations 4 and 6), which compares to removal during the 

reconnaissance survey (84 ± 19%).  Enhanced removal during biofilter treatment is attributed to aerobic 

biotransformation. 
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Nine percent of triclosan was removed during tank-based treatment at the site (vs. 38 ± 22% 

during the reconnaissance survey) likely due to sorption to settling solids, while 98% removal was 

observed during biofilter treatment (vs. 92 ± 18% during the reconnaissance survey).  Enhanced removal 

during biofilter treatment is attributed to additional sorption to filtered particulate matter and aerobic 

biotransformation. 

Concentrations of the metal-chelating agent, NTA, were low – around 1 μg/L during the week-

long experiment– in all tank effluents at the site (Figure 11).    NTA is a common ingredient in laundry 

detergents.  Wastewater originating from clothes washing activities is a minor contribution to the Mines 

Park wastewater flow because there are no laundry facilities within the apartment complex.  As compared 

to the reconnaissance survey in which higher concentrations of NTA (~60 μg/L) were reduced by 76 ± 

29%, no apparent removal of NTA was observed during biofilter treatment at the Test Site.  The low 

concentrations in the Mines Park wastewater may be insufficient to support a microbial community 

capable of preferentially degrading NTA. 

The other metal-chelating agent EDTA persisted during treatment in engineered unit operations at 

the Test Site at concentrations similar to influent concentrations (Figure 11), which agrees with 

observations from the reconnaissance survey (<15% removal during tank and biofilter treatment).  

Previous research has reported similar findings regarding EDTA persistence during municipal wastewater 

treatment (Alder et al. 1990).  EDTA is not expected to be removed during engineered treatment by 

volatilization (KH = 7.69 x 10-13 atm-L/mol) or sorption (log Kow = -3.86).   

Quantification of NPE metabolites at the Mines Park Test Site focused on NP, NP1EO, and 

NP1EC which are the predominant metabolites in wastewater (Ahel et al. 1994).  The distribution of NPE 

metabolites during engineered treatment of the Mines Park wastewater during the 7-day experiment 

differed from the typical distribution observed during the reconnaissance survey.  In the reconnaissance 

survey, anaerobic domestic wastewater was typically comprised of relatively low levels (e.g. average < 20 

μg/L) of each of the three metabolite groups (NP, ∑NPEO, and ∑NPEC).  During aerobic biofilter 

treatment, concentrations of ∑NPEO were reduced to near or below the reporting level, concentrations of 

∑NPEC increased by 2-fold or greater, and changes in NP concentrations varied by site and sampling 

date.  These results are consistent with published literature (Ahel et al. 1994) reporting the accumulation 

of the acidic metabolite ∑NPEC under aerobic conditions. 

In Mines Park anaerobic septic tank wastewater (location 1), NP and NP1EO concentrations (<5 

μg/L) were similar to or lower than typical concentrations found during the reconnaissance survey while 

NP1EC concentrations in the first tank exceeded 300 μg/L, which is more than six times higher than the 

maximum value reported in any anaerobic wastewater, residential or non-residential, during the 

reconnaissance survey.  NP1EC concentrations remained elevated in the second tank (location 3) at an 
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average concentration of 160 μg/L, which is more than 50 times higher than NP1EC concentrations 

measured in the same location during the 2003-2004 reconnaissance survey (concentrations were less 

than 3 μg/L). NPEs typically originate in domestic wastewater from household cleaning and personal care 

products such as laundry detergent, which comprise approximately 15% of NPE production (Huntsman et 

al. 2006).  Since there are no laundry facilities in the apartment complex, NPE metabolite concentrations 

are expected to be lower than typical values, as was observed for NP and NP1EO.  The remaining 85% of 

NPE production is used in high-strength industrial and institutional cleaning products and applications.  A 

few possible explanations for the very high NP1EC concentrations are given:  

1) A carpet cleaning service was observed servicing one or more of the units in the Mines Park 

apartment building during the week-long sampling experiment.  The cleaning product may have contained 

NP1EC or parent NPEs which were degraded and transformed during the aerobic cleaning process.  The 

wastewater was then discharged to the OWTS, resulting in the high observed concentrations of NP1EC in 

the septic tank wastewater.  However, NP1EC concentrations were consistently elevated during all seven 

days of the experiment, which does not correspond to a single mid-week cleaning event.  Also, elevated 

concentrations of other NPE metabolites are expected, but concentrations of NP and NP1EO were low 

throughout the experiment. 

2) A change in source habits occurred within the 6 months prior to the sampling event, as 

evidenced by very elevated concentrations of fats, oil, and grease in the septic tank wastewater (Lowe et 

al. 2008) and the necessity to scour the pipe from the apartment complex to the first septic tank on three 

occasions between November 2007 and July 2008 (as compared to no scouring events between 1998 and 

2007).  A specialized product containing NP1EC as the primary ingredient (rather than NPEs) may be in 

concomitant use with high grease production at the apartment complex.  Listing of individual surfactant 

compounds is not required on ingredient labels of consumer product chemicals and manufacturing and 

usage information regarding NP1EC is difficult to acquire.  However, use of NP1EC as the primary 

ingredient in an oil soluble corrosion inhibitor for use with circulating oils, compressor oils, fuels, gear 

oils, greases, hydraulic fluids, industrial lubricants, and metal working fluids has been reported (Ciba-

Geigy 2008), suggesting that there may be other previously unreported sources of NP1EC. 

The elevated NP1EC concentrations provide another line of evidence for the sensitivity of OWTS 

to the specific chemical- and water-using activities at the source.  Research is underway to investigate 

potential correlations between water-using activities (i.e. toilet flushes, hand washes) and product 

occurrence (i.e. laundry detergent, antibacterial soap) and raw wastewater and septic tank wastewater 

concentrations of trace organic contaminants (Lowe et al. 2008).  

During engineered treatment, aqueous concentrations of NP were consistently low - within three 

times the reporting level (< 6 μg/L) - indicating negligible removal and/or accumulation in the aqueous 
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phase during anaerobic or aerobic engineered treatment.  NP1EO concentrations were low – around 1 

μg/L – in the four septic tank effluents, and decreased to concentrations below the reporting level during 

biofilter treatment.  This is consistent with studies reporting efficient elimination of NPEOs during 

aerobic treatment (Ahel et al. 1994).     

NP1EC concentrations decreased in a step-wise fashion during treatment within engineered unit 

operations (Figure 11).  Approximate removal during tank-based treatment was 74%, and removal from 

STE during biofilter treatment was 92%, resulting in an overall NP1EC removal of 99% during treatment 

within engineered unit operations at the Mines Park Test Site (from over 300 μg/L in location 1 to less 

than 3 μg/L in location 6: TFE).  NP1EC removal during treatment within the Mines Park engineered unit 

operations is attributed to anaerobic and aerobic transformation to NP (Ahel et al. 1994, Maguire 1999) 

with subsequent sorption to septic tank solids.  NP concentrations on Mines Park septic tank solids 

measured in 2004 were estimated near 55,000 μg/kg.  On a molar basis, concentrations of NP sorbed to 

solids (250 μmol/kg) greatly exceeded even the highest NP1EC wastewater concentrations (6 μmol/L), 

suggesting that the overall removal of NPE surfactants is limited by the mineralization of NP sorbed to 

septic tank solids. 

 

5.3 Loading to the Soil Treatment Unit 

 

Some trace organic contaminants in the wastewaters (1,4-dichlorobenzene, caffeine, triclosan) are 

removed during treatment within onsite engineered unit operations, but others (EDTA, ∑NPEC) may be 

released to soil treatment units at concentrations similar to the influent or as degradation products 

resistant to further removal.  During the reconnaissance survey, loading to the soil treatment units 

(mg/m2/d) in operational systems was calculated from effluent concentrations and individual system 

HLRs (Table 3). The maximum combined NP, ∑NPEO, and ∑NPEC loading was 10 mg/m2/d (restaurant, 

single-family home), and the maximum EDTA loading was 20 mg/m2/d (restaurant). A convenience store 

had the highest loading of 1,4-dichlorobenzene (1.6 mg/m2/d) and triclosan (2.0 mg/m2/d), which were 10 

times higher than the other systems. Soil treatment unit loading in biofilter-based systems was orders of 

magnitude lower than tank-based systems with similar sources. 

While knowledge of the wastewater source may identify effluents with potentially high trace 

organic contaminant concentrations, chemical loading also depends on HLRs. High concentration 

effluents dispersed at low HLRs can have less chemical loading to the soil treatment unit than low 

concentration effluents dispersed at high HLRs. For example, effluents from veterinary hospitals had 

higher concentrations of NPE-derived compounds than effluents from single-family homes. However, a 
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single-family home had a higher ∑NPEC loading (0.7 mg/m2/d) than a veterinary hospital (0.4 mg/m2/d) 

due to the greater HLR in the residential (2.8 cm/d) than the veterinary (0.81 cm/d) sources.  

The range of target compound concentrations measured in STE, TFE, and tap water from the 

delivery basins at the Mines Park Test Site is given in Table 14.  This provides insight into typical 

concentrations of trace organic contaminants that have been applied to the soil infiltration test cells during 

the three years of operation.  Using the average effluent concentration (or the RL if the average was <RL) 

and design HLRs, chemical loading rates (mg/m2/d) to test cells receiving STE (Table 15) and TFE 

(Table 16) were calculated.  At a typical HLR (2 cm/d), each soil test cell (surface area ~ 2900 cm2) 

receiving STE from this multi-family residence is being loaded each year with approximately 61 mg of 

caffeine, 17 mg of triclosan, 48 mg of EDTA, 8.8 mg of NTA, and 144 mg of NPE surfactant metabolites 

(NP + NP1EO + NP1EC) as well as other non-quantified trace organic contaminants.  Soil receiving TFE 

from this multi-family residence at a typical HLR is being loaded each year with much lower 

concentrations of caffeine (1.3 mg), triclosan, (≤0.43 mg), and NPE metabolites (≤24 mg), while mass 

loadings of EDTA (76 mg) and NTA (9.6 mg) are similar.  Annual mass loadings of caffeine, triclosan, 

and NPE metabolites in TFE loaded at a 4-fold higher HLR are still less than or similar to STE mass 

loadings at a typical HLR. 

Total mass loading during the three years of operation to each test cell (Tables 15 and 16) was 

calculated based on average tank effluent concentrations (Table 14 or the RL if the average was <RL) and 

the estimated total infiltrated volume of effluent at each test cell (Table 7).   

 
 
 

Table 14. Range of trace organic contaminant concentrations (μg/L) in effluent applied to the soil 
infiltration test cells at the Mines Park Test Site. [10 to 13 samples of septic tank effluent (STE) and 
textile filter effluent (TFE) and 2 to 4 samples of tap water were collected from the delivery basins 
between May and December 2007; <RL = less than the reporting level; Min = minimum; Max = 

maximum; Avg = average,  ½ RL used for values <RL to calculate average.] 
 

Analyte RL 
(μg/L) 

STE (μg/L) TFE (μg/L) Tap Water (μg/L) 
Min Max Avg Min Max Avg Min Max Avg 

Caffeine 0.2 20 44 28 <RL 1.2 0.60 <RL <RL <RL 
Triclosan 0.2 5.0 14 8.0 <RL 0.31 <RL <RL <RL <RL 
EDTA 0.1 8.2 37 22 23 48 35 0.91 6.3 3.0 
NTA 0.02 1.5 6.4 4.1 1.8 6.6 4.5 0.04 0.13 0.09 
NP1EC 1 23 84 58 3.0 12 8.3 1.7 4.8 2.9 
NP1EO 1 <RL 5.6 2.0 <RL <RL <RL <RL <RL <RL 
NP  2 2.4 11 4.3 <RL 2.9 <RL <RL <RL <RL 
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In contrast to WWTP, which receive raw wastewater whose composition is relatively constant 

(due to dilution from many sources) and produce effluents whose composition is relatively constant, 

OWTS effluent composition is subject to variation due to a number of factors. Differences in consumer 

product use, proportion of water use activities contributing to the wastewater flow, number of occupants, 

and volume of wastewater, all can fluctuate over time and between households and businesses. Effluents 

applied to the soil treatment unit may contain trace organic contaminants at concentrations similar to, less 

than, or greater than influent concentrations.  Treatment of trace organic contaminants during travel 

through the vadose zone is critical in minimizing adverse effects in receiving environments. 

 
 

Table 15. Mass loading (mg) of target trace organic contaminants in residential septic tank effluent (STE) 
to Mines Park soil test cells at design and actual infiltration rates. [HIR = hydraulic infiltration rate; See 

Tables 6 and 7 for test cell information.] 
 

Analyte 

Daily mass loading 
rate to test cell 

(mg/m2/d) at design 
HIR 

Yearly mass loaded 
to test cell (mg) at 

design HIR  

Estimated total mass loaded to 
test cell (mg) after 3 years of 

operation at actual HIR 

2 cm/d 8 cm/d 2 cm/d 8 cm/d TBC6 TCC2 TBC3 TAC4 
Caffeine 0.57 2.3 61 240 94 130 130 290 
Triclosan 0.16 0.64 17 68 27 35 35 82 
EDTA 0.45 1.8 48 190 74 99 98 230 
NTA 0.08 0.33 8.8 35 14 18 18 42 
NP1EC 1.2 4.6 130 490 190 260 260 600 
NP1EO 0.04 0.16 4.4 17 6.8 9.1 9.0 21 
NP 0.09 0.34 9.3 37 14 19 19 44 

 

Table 16. Mass loading (mg) of target trace organic contaminants in residential textile filter effluent 
(TFE) to Mines Park soil test cells at design and actual infiltrated volumes. [HIR = hydraulic infiltration 

rate; See Tables 6 and 7 for test cell information. * The RL was used as the average effluent 
concentration, therefore actual values are less than or equal to these reported values.] 

 

Analyte 

Daily mass loading 
rate to test cell 

(mg/m2/d) at design 
HIR 

Yearly mass loaded 
to test cell (mg) at 

design HIR  

Estimated total mass loaded to 
test cell (mg) after 3 years of 

operation at actual HIR 

2 cm/d 8 cm/d 2 cm/d 8 cm/d TAC2 TBC4 TBC1 TCC6 
Caffeine 0.01 0.05 1.3 5.1 4.0 4.8 3.2 10 
Triclosan * 0.004 0.02 0.43 1.7 1.3 1.6 1.1 3.5 
EDTA 0.71 2.8 76 300 240 280 190 610 
NTA 0.09 0.36 9.6 38 30 35 24 77 
NP1EC 0.17 0.67 18 71 55 66 45 150 
NP1EO * 0.02 0.08 2.1 8.5 6.6 8.0 5.4 17 
NP * 0.04 0.16 4.3 17 13 16 11 35 
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CHAPTER 6 

FATE DURING SOIL TREATMENT 

 

Results from experiments conducted at the Mines Park Test Site to assess the fate of bulk 

parameters and target trace organic contaminants during soil treatment as affected by effluent type and 

hydraulic loading rate are presented and discussed.   

 

6.1 Occurrence and Fate in Soil Solution 

 

6.1.1 Bulk Parameters 

 

The absence of ammonia and presence of nitrate (Figure 12) in the soil solution suggests that 

nitrification is occurring in the vadose zone.  Ammonia concentrations were below the reporting level at 

all depths for both effluent types at both HLRs.  Nitrate concentrations increased from near zero in STE to 

almost 40 mg-N/L at 60 cm below the infiltrative surface, and remained elevated (~20 mg-N/L) through 

240 cm of soil.  Nitrate concentrations in soil solution in TFE cells at all depths were similar to input 

concentrations (15-20 mg-N/L).  At shallow depths (e.g. 60 cm below the infiltrative surface), TFE soil 

solution nitrate concentrations were about half the concentration of their STE counterparts.  At deeper 

depths (e.g. 240 cm), concentrations of nitrate were similar (~20 mg-N/L) regardless of the hydraulic 

loading rate or effluent type. 

Further evidence of nitrification is provided by changes in pH and alkalinity in soil solution.  The 

nitrification process produces acid and consumes alkalinity.  In the high HLR test cells (for both effluent 

types), alkalinity has been depleted and the pH has decreased to less than 7.0 at 60 cm below the 

infiltrative surface (vs. background soil solution pH > 8.0).  In the low HLR test cells, the pH is near 

background levels, suggesting that the alkalinity present is sufficient to buffer the soil system from acid-

producing nitrification reactions.  With depth, the alkalinity increases and the pH becomes slightly 

alkaline (similar to background soil solution), with corresponding increases in concentrations of major 

cations (Figure 12) such as sodium, calcium, and magnesium (40 to 100 mg Na/L, 20 to 80 mg Ca/L, 5 to 

35 mg Mg/L) while levels of trace metals remain low (i.e. <0.05 mg/L each of Fe, Al, Zn and<0.5 mg 

Ni/L).  DOC, COD, and total phosphorus are removed from soil solution during the first 60 cm of soil 

treatment regardless of effluent type and hydraulic loading rate (Figure 12).  Concentrations of DOC are 

~5 mg/L in soil solution, COD remains near background levels (<20 mg/L) at all depths, and 

concentrations of total phosphorus are less than 0.3 mg phosphate as P/L in soil solution.
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6.1.2 Trace Organic Contaminants 

 

After three years of effluent application to the soil test cells, the occurrence and fate of target 

compounds in soil solution differed between compounds (Figure 13).  In general, soil treatment through 

240 cm of sandy loam soil provided greater than 90% removal of many of the target trace organic 

contaminants from applied effluent; often this treatment was achieved within the first 60 cm of soil.  In 

the following sections, comparisons are made between test cells designed to receive effluent at a HLR of 

either 2 cm/d or 8 cm/d.  At the start of the characterization studies (e.g. after three years of operation), 

the actual cumulative hydraulic infiltration rate (HIR) ranged from 1.04 to 1.39 cm/d and 1.70 to 2.50 

cm/d for STE and TFE cells, respectively, designed to receive 2 cm/d.  The HIR of the design 8 cm/d test 

cells were 3.24 cm/d (STE) and 5.46 cm/d (TFE).  Therefore, the high loading rate test cells had 

processed 2.2 and 3.2 times more effluent than the test cells receiving a “typical” loading rate of effluent.  

See Section 3.2.1.3 for additional information regarding hydraulic performance as affected by operation 

and effluent application. 

 

6.1.2.1 Caffeine 

 

Caffeine was removed to below the reporting level (0.2 μg/L) in soil solution within the first 60 

cm of soil regardless of effluent type and hydraulic loading rate (Figure 13).  Other studies have reported 

removal of caffeine during soil treatment of wastewater effluent to below the reporting level or to low 

ng/L concentrations (Godfrey et al. 2007, Swartz et al. 2006, Hinkle et al. 2005, Drewes et al. 2003a, 

Seiler et al. 1999, Cordy et al. 2004).  This removal is likely due to biotransformation (Topp et al. 2006) 

rather than volatilization (KH = 3.58 x 10-8 atm/L-mol, see Table 17) or sorption to soil (Cw
sat = 21,600 

mg/L, log Kow = -0.07), though caffeine has been measured on soil irrigated with reclaimed water (Kinney 

et al. 2006).  Greater than 99% removal of caffeine has been reported during biological treatment in 

WWTP (Thomas and Foster 2005, Buerge et al. 2003).  Topp et al. (2006) found no residual caffeine in 

an agricultural sandy loam soil microcosm after 2 days, and recovered 60% of added caffeine as CO2 

within 32 d.  Greater mineralization occurred with soils amended with 5% biosolids.  The results from 

this study agree with published literature indicating that caffeine is rapidly removed from wastewater 

effluent during soil treatment likely through aerobic biotransformation.    
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Table 17. Summary of relevant physicochemical properties of target compounds. [CASRN = Chemical 
Abstracts Service Registry Number; MW = molecular weight; pKa = acid dissociation constant; Cw

sat = 
water solubility, Kow = octanol-water partition coefficient; KH = Henry’s law constant. Values determined 
at 25 ºC unless otherwise noted. Source: SRC 2008, except a Muller and Schlatter 1998, b Ahel and Giger 

1993a, c Ahel and Giger 1993b. nr = not reported (estimated value).] 
 

Analyte CASRN MW 
(g/mol) pKa 

Cw
sat 

(mg/L) log Kow KH  
(atm-L/mol) 

Caffeine 58-08-2  194.19 10.4 21,600 -0.07 3.58E-08 
Triclosan 3380-34-5  289.55 7.9 10 (20ºC) 4.76 4.99E-06 
EDTA 60-00-4 292.25 0.26 1000 -3.86 5.77E-13 
NTA 139-13-9 191.14 3.03 59,100 -3.81 1.30E-07 
NP 104-40-5 220.36 10.3 a 6.35b,7 4.48c,5.76 3.40E-02 
NP1EO 104-35-8 264.41 nr (<10.3) 3.37b 4.17c  nr (<3.4E-02) 
NP1EC 3115-49-9 278.39 nr (~3.3-4) 2.2 5.8 1.79E-04 

 

Mean travel times within the first 60 cm of soil in the Mines Park test cells ranged from an 

average of 22 d (8 cm/d HLR) to an average of 32 d (2 cm/d HLR), as determined by a temporal method 

of moments analysis of bromide transport during a tracer test (Conn 2008).  The monitoring data does not 

permit the determination of a removal rate constant.  First-order kinetics is often assumed for the 

attenuation of organic compounds.  However, the validity of this assumption has been questioned for 

trace organic contaminants in the environment at low μg/L or ng/L levels in the presence of mg/L levels 

of organic matter measured as BOD or DOC.  If one assumes zero-order rate kinetics, in which the 

attenuation rate is not affected by the concentration of the trace organic contaminant, the apparent zero-

order attenuation rate constant, kapp (μg/L-d), for caffeine during the first 60 cm of soil was calculated 

based on the equation: 

 

)16(0 −
−

=
t

CC
kapp  

 

to range between 1.06 and 1.55 μg/L-d in soils receiving STE and between 0.028 and 0.050 μg/L-d in soil 

receiving TFE, based on average initial STE and TFE concentrations (C0) of 28 μg/L and 0.60 μg/L, 

respectively, and two final concentrations (C) of 0.2 μg/L (the RL) and 0.002 μg/L (1/100 of the RL) 

chosen to bound the range of expected caffeine soil solution concentrations. These apparent attenuation 

rate constants are likely conservative since the majority of caffeine may actually be removed, likely via 

aerobic biotransformation, within a much shorter time while the effluent is in contact with the organic-

rich biofilm at and just below the infiltrative surface.  Caffeine may have degraded to 1,7-

dimethylxanthine, which was not measured here but is a primary degradation product of caffeine (Swartz 
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et al. 2006), before potential ultimate mineralization during the long residence time in the vadose zone 

(Topp et al. 2006).   

 

6.1.2.2 Triclosan 

 

Similar to caffeine, triclosan was removed from soil solution to concentrations below the 

reporting level (0.2 μg/L) within 60 cm of soil in the Mines Park soil test cells regardless of effluent type 

or hydraulic loading rate (Figure 13).  In previous studies, triclosan was not detected above the reporting 

level in soil solution 30 cm below the infiltrative surface (Hinkle et al. 2005) and was sporadically 

detected at low levels (ng/L) in ground water downgradient of an OWTS (Carrara et al. 2008).   

Volatilization of triclosan is assumed to be negligible given its low Henry’s law constant (KH = 

4.99 x 10-6 atm/L-mol).  Sorption to soil organic matter and biotransformation are the likely removal 

mechanisms during onsite wastewater soil treatment.  Numerous studies have reported overall removal of 

triclosan in WWTP ranging from 58 to >99%, with anywhere from 7 to 50% of that removal attributed to 

sorption and the rest attributed to biotransformation (Heidler and Halden 2007, Thomas and Foster 2005, 

Bester 2003, McAvoy et al. 2002, Singer et al. 2002).  Orvos et al. (2002) reported equilibrium sorption 

of triclosan to deactivated WWTP sludge (foc = 0.45) within 8 hours during batch sorption experiments.  

The data were well fitted to a Freundlich isotherm (log KF = 4.33, nF = 0.997) with a log of the organic 

carbon sorption coefficient (log Koc) of 4.68.  The biodegradation half life of triclosan on a loam soil (foc = 

0.013) was 18 days under aerobic conditions and negligible through the 70 day experiments under 

anaerobic conditions (Ying et al. 2007), indicating that triclosan sorbed to soil is available for aerobic 

biotransformation. 

At the Mines Park Test Site, the fraction of triclosan present in the neutral (protonated) form, fHA, 

in STE is 0.76 and in TFE is 0.98, based on the relationship between pH and pKa (Schwarzenbach et al. 

2003): 

 

( )( ) )26(101
1

−+=
−− apKpH

HAf  

 

where the average pH in STE is 7.39 and in TFE is 6.17 and the pKa of triclosan is 7.9 (Table 17).  This is 

the fraction available to undergo hydrophobic sorption to soil organic matter. Based on the relationship 

between the equilibrium concentration of an analyte on soil, Cs, and in the aqueous phase, Cw 

(Schwarzenbach et al. 2003): 
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greater than 99% of triclosan in effluent applied to the soil infiltrative surface at Mines Park is expected to 

be present sorbed to the soil, assuming equilibrium conditions, Koc = 47,863 (Orvos et al. 2002), and foc of 

the infiltrative surface soil = 0.0275 (McKinley 2008).  Effective removal of triclosan within 60 cm of 

soil is likely achieved by a combination of sorption to soil and aerobic biodegradation of this sorbed 

triclosan. 

 

6.1.2.3 NTA and EDTA 

 

 The two metal-chelating agents, NTA and EDTA, showed different behavior during soil 

treatment at the Mines Park Test Site (Figure 13).  NTA, applied at average concentrations between 4 and 

5 μg/L, was reduced to less than 0.1 μg/L within the first 60 cm of soil in all test cells (with the exception 

of one test cell receiving 2 cm/d of TFE in which average NTA concentrations 60 cm BIS were 1.1 μg/L).  

EDTA was applied to the soil test cells at average concentrations of 22 μg/L (STE) and 35 μg/L (TFE).  

Average concentrations of EDTA in soil solution from test cells receiving 2 cm/d of either effluent were 

34 μg/L (60 cm BIS), 1.0 to 2.8 μg/L (120 cm BIS), and 0.20 to 0.34 μg/L (240 cm BIS).  Average 

concentrations of EDTA in soil solution from test cells receiving 8 cm/d of either effluent were 66 to 68 

μg/L (60 cm BIS), 26 to 35 μg/L (120 cm BIS), and 0.72 to 1.4 μg/L (240 cm BIS). EDTA was measured 

in tap water in the Test Site delivery basin at an average concentration of 3.0 μg/L and in the soil (2.6 

μg/L 60 cm BIS and 0.93 μg/L 120 cm BIS) in the test cell receiving tap water at 4 cm/d.   

 In a study with similar influent concentrations as those in the Mines Park effluent, NTA was 

reduced from an average of 4 μg/L in chlorinated secondary effluent to 0.4 to 2.1 μg/L (56 to 90%) within 

3 m of soil at a soil aquifer treatment site, and to 0.1 to 0.5 μg/L (90 to 98%) by 38 m of unsaturated soil 

below the infiltrative surface (Yoo et al. 2006).  NTA removal during soil treatment is likely by 

biotransformation rather than volatilization (KH = 1.30 x 10-7 atm-L/mol) or sorption (Cw
sat = 59,100 

mg/L, log Kow = -3.81).  The biodegradation half life of NTA in STE (2 mg/L) added to aerobic OWTS 

soils was less than 3 days in batch laboratory experiments (Shimp et al. 1994).  An apparent zero-order 

attenuation rate constant, kapp (Equation 6-1), of NTA in the Mines Park test cells ranged from 0.115 to 

0.182 μg/L-d, assuming travel times to 60 cm ranging from 22 to 32 days, average influent concentrations 

ranging from 3.7 μg/L (STE) to 4.0 μg/L (TFE), and 60 cm soil solution concentrations ranging from 0.02 

μg/L (the RL) to 0.0002 μg/L (1/100 of the RL). 
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 Previous research has reported similar findings regarding EDTA persistence relative to NTA 

during soil treatment (Yoo et al. 2006, Drewes et al. 2003b, Ding et al. 1999, Nowack et al. 1997).  For 

example, NTA concentrations were reduced by up to 90% during 3 meters of soil transport at a soil 

aquifer treatment site, but EDTA was present at that depth in similar or higher concentrations than the 

input concentration (27 μg/L), and was measured at concentrations around 5 μg/L (80 to 84% removal) in 

soil solution 38 meters below the infiltrative surface (Yoo et al. 2006).  EDTA is not expected to be 

removed during soil treatment by volatilization (KH = 5.77 x 10-13 atm-L/mol) or sorption (log Kow = -

3.86).  The biodegradability of EDTA strongly depends on pH.  No degradation of EDTA was found 

during activated sludge treatment at pH = 7; however, within one month of increasing the pH  to 8.0 to 

9.0, EDTA concentrations were consistently reduced to less than the reporting level (Van Ginkel et al. 

1997).   

This enhanced biodegradability in alkaline solutions may be related to pH effects on EDTA-metal 

complex formation.  At acidic pH values, EDTA forms strong complexes with transition metals such as 

iron (the log of the stability constant of Fe(III)-EDTA, log KFe-EDTA, is 25.0 at an ionic strength of 0.1 M, 

Martell and Smith 1974).  At higher pH values, Fe(III) hydroxide precipitates can form, allowing alkaline 

metals with lower stability constants to form complexes with EDTA (e.g. log KCa-EDTA = 10.61, log KMg-

EDTA = 8.83, Martell and Smith 1974).  In a slightly alkaline surface water (pH = 8.05 to 8.55) where 

calcium and sodium were the dominant cations (Xue et al. 1995), only a small fraction of EDTA was 

complexed with iron, while the majority was complexed with calcium.  An EDTA-degrading 

microorganism has been identified (Nörtemann 1999) that can transport EDTA into its cell when it is 

complexed with calcium or magnesium but not when it is complexed with iron(III), zinc, copper(II), 

cobalt(II), or nickel (Henneken et al. 1995, Klüner et al. 1998).    

 In the effluent and soil solution at Mines Park, sodium, calcium, and magnesium are the dominant 

cations (40 to 100 mg Na/L, 20 to 80 mg Ca/L, 5 to 35 mg Mg/L) while there are very low levels of 

transition metals (i.e. <0.05 mg/L of Fe, Al, and Zn, <0.5 mg/L Ni).  As the pH increases to greater than 

8.0 and the concentrations of the major cations increase with depth below the infiltrative surface (Figure 

12), EDTA complexes with alkaline earth metals such as calcium and magnesium may dominate over 

complexes with iron, which is hypothesized to increase the biodegradability of EDTA.  A decrease in 

EDTA concentrations in soil solution co-occurs with an increase in pH (Figure 14), as well as an increase 

in major cation concentrations and increasing depth BIS.  All soil solution samples with pH > 8.41 had 

EDTA concentrations < 5% of the average input concentration.  All soil solution samples with pH < 8.19 

had EDTA concentrations > 95% of the average input concentration.  Soil solution samples with pH 

values between 8.19 and 8.41 varied in concentration from < 5 to > 95% of the average input 

concentration.  Due to the large number of known and potential co-varying characteristics in the Mines 
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Park vadose zone (e.g. EDTA concentration, pH, depth, cation concentration, water content, redox 

conditions, organic carbon content, microbial biomass, etc.), the pH-dependent biodegradation of EDTA 

is a hypothesis to explain the EDTA behavior at the Test Site that is supported and strengthened by results 

from previous studies.  The behavior of EDTA in the Mines Park test cells highlights the 

interconnectedness of the organic and inorganic realms in the vadose zone, and emphasizes the need to 

understand all fractions, including organic and inorganic soil-solution interactions and soil physics, when 

assessing an environmental system.   
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Figure 14. EDTA concentration versus pH in Mines Park soil solution. [Error bars = ±1 standard 
deviation based on three samples from each lysimeter.  No error bar = less than three samples collected.] 

 

 

6.1.2.4 Nonylphenol Surfactant Metabolites 

 
 NP1EO, measured in STE at concentrations around 2 μg/L and <RL in TFE, was never measured 

above the reporting level (1 μg/L) in soil solution regardless of effluent type, HLR, or depth below the 

infiltrative surface (Figure 13). Concentrations of NP1EC, averaging 58 μg/L in STE and 8 μg/L in TFE, 

ranged between 3 and 8 μg/L in soil solution 60 cm BIS regardless of effluent type and HLR, with the 

exception of one test cell with concentrations between 10 and 13 μg/L (receiving 2 cm/d TFE).  No 

additional removal was observed with additional soil treatment, resulting in the persistence of NP1EC 

through 240 cm of soil at concentrations ranging from 2.2 to 7.2 μg/L.  Concentrations of NP, which were 

typically less than 6 μg/L in effluent, increased during the first 60 cm of soil treatment in all test cells to 
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concentrations up to 17 μg/L.  Removal efficiencies in all test cells between 60 and 120 cm of soil varied 

from negligible removal to up to 75% removal.  By 240 cm, concentrations were < 5 μg/L, and average 

removal efficiencies ranged from 65 to 85% as compared to concentrations in 60 cm soil solution.    

 In summary, at the Mines Park Test Site: 1) NP1EO was removed from soil solution within the 

first 60 cm of soil treatment, 2) concentrations of NP initially increased during the first 60 to 120 cm of 

soil before decreasing to less than 5 μg/L by 240 cm BIS, and 3) NP1EC concentrations ranged from 2 to 

8 μg/L at all depths, resulting in ≥90% removal of NP1EC from STE and 9 to 60% removal from TFE.  

These results are similar to previous studies that have reported the reduction of NPEOs, accumulation of 

NP at shallow depths, and low-level persistence of NPECs during vadose zone transport.  For example, 

during soil aquifer treatment, NPEOs were not measured at any depths (Montgomery-Brown et al. 2003).  

Under oxic conditions, NP and NPECs were attenuated.  Under anoxic conditions, NPECs were reduced 

while NP was produced during the first 1.5 m of transport before decreasing during the next 1.5 m of 

transport.  In ground water underlying a sandy onsite soil treatment unit (Swartz et al. 2006), 

concentrations of NP1-3EO were similar to or lower than septic tank concentrations on the same day (≤ 5 

μg/L), NP concentrations were up to 6-fold greater (STE: 10 to 16 μg/L, GW: up to 84 μg/L), and NP2EC 

concentrations were up to 30-fold greater (STE: 1.6 to 2.3 μg/L, GW: up to 68 μg/L).  In an OWTS 

receiving elevated levels of NPE-based laundry detergents (e.g. > 800 μg/L of NP + NP1-16EO + NP1-

4EC applied to the soil treatment unit for one year), the summed concentration was < 2.5 μg/L in vadose 

zone soil solution 290 cm BIS (Huntsman et al. 2006).  

 At the Mines Park Test Site, removal of NP1EO within the first 60 cm of soil is likely due to 

aerobic biotransformation to NP.  NP1EC removal from STE is likely due to biotransformation to NP, 

while untransformed product will remain in soil solution due to its acidity as compared to other 

degradation products.  NP, in turn, is likely removed by sorption to soil (log KD = 0.93 to 2.5 L/kg, 

Düring et al. 2002), though aerobic biotransformation of high concentrations of NP (e.g. 1 to 250 mg/kg) 

in agricultural soils has been reported (Topp and Starratt 2000).  The increase in NP concentrations within 

the first 60 to 120 cm of vadose zone soil treatment suggests that at these depths the degradation of 

NPEOs and NPECs to NP is faster than the sorption and/or biotransformation of NP.   

 The overall removal of NPE metabolites (e.g. NP+NP1EO+NP1EC) from STE during Mines 

Park soil treatment averaged 78% (2 cm/d) and 70% (8 cm/d) within 60 cm of soil and 87% (2 cm/d) and 

90% (8 cm/d) within 240 cm of soil receiving STE.  In contrast, because the input concentrations in TFE 

were low, an average production of 50% (2 cm/d) and 20% (8 cm/d) of NPE metabolites within 60 cm of 

soil was measured.  By 240 cm, an average of 21% (2 cm/d) and 32% (8 cm/d) removal was measured in 

soil receiving TFE.   
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6.1.2.5 Sulfamethoxazole and Other Non-Target Compounds 

 

 While there is less certainty associated with the antibiotic data because a single sample from each 

location was analyzed (data generously provided by Mike Meyer, USGS), the data provide important 

information regarding the sporadic occurrence and persistence of pharmaceuticals in the vadose zone as 

compared to that of consumer product chemicals.  Seven out of 33 antibiotics and pharmaceuticals were 

identified in one or both of the wastewater effluents: sulfamethoxazole (0.02 μg/L, ponded TFE only), 

ofloxacin (0.45 to 0.96 μg/L), erythromycin (0.02 to 0.04 μg/L), erythromycin-H2O (0.20 to 0.32 μg/L), 

azithromycin (0.01 to 0.02 μg/L), trimethoprim (0.01 to 0.07 μg/L), and ibuprofen (5.1 μg/L, STE only).  

Three of those compounds (ofloxacin, erythromycin, and erythromycin-H2O) as well as two others 

(roxithromycin and tetracycline) were measured in Mines Park wastewater during the spring 2004 

reconnaissance survey sampling event (from location 3).  Three compounds were detected in soil 

solution: ofloxacin (0.01 μg/L) and erythromycin-H2O (0.03 μg/L) were each detected once in soil 

solution 60 cm BIS of different test cells.  Sulfamethoxazole was detected more frequently than the other 

antibiotics, though sporadically, in soil solution.  In the three test cells receiving 2 cm/d of STE, 

sulfamethoxazole was detected 60 cm BIS in only one of the three cells at a concentration of 7.0 μg/L. In 

soil solution 120 cm BIS, sulfamethoxazole was measured at 0.77 μg/L in the same test cell, and at 1.8 

μg/L in one of the other cells in which the compound was not detected at 60 cm.  Similarly, 

sulfamethoxazole was detected in only one of three test cells receiving 2 cm/d of TFE, at concentrations 

of 3.2 and 0.06 μg/L 60 and 120 cm BIS, respectively.  The compound was present in both test cells 

receiving 8 cm/d of effluent: 2.2 μg/L (60 cm) and 0.04 μg/L (120 cm) in the STE test cell (no sample 

collected at 240 cm BIS) and 4.5 μg/L (60 cm), 4.3 μg/L (120 cm), and 0.51 μg/L (240 cm) in the TFE 

test cell.   

 In the test cells in which sulfamethoxazole was detected (Figure 13), the compound remained 

above the reporting level (0.005 μg/L) through 120 cm of soil and through 240 cm of soil in the one test 

cell analyzed at that depth.  The results confirm previous reports of the sporadic, non steady-state 

occurrence and persistence of sulfamethoxazole in effluent through vadose zone soil to the underlying 

ground water (Ternes et al. 2007, Godfrey et al. 2007, Kinney et al. 2006, Hinkle et al. 2005).  The 

persistence of sulfamethoxazole during soil aquifer treatment (Ternes et al. 2007) was attributed to low 

sorption affinity and biodegradability, though reported log Koc values vary from -0.17 (Ternes et al. 2007) 

to 3.47 (Carballa et al. 2008).  More research is needed to assess removal mechanisms of 

sulfamethoxazole during soil treatment.    
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6.2 Soil Treatment Efficiency 

 

6.2.1 Percent Removal 

 

 In the previous section, it was shown that for each target compound (with the exception of 

EDTA) soil solution concentrations at the same depth were similar (Figure 13) in all test cells regardless 

of applied effluent type (STE or TFE) or design HLR (2 or 8 cm/d).  This suggests that the Mines Park 

soil acts as a normalizing treatment unit, producing a high quality effluent regardless of the influent 

quality.  Percent removal of DOC and trace organic contaminant concentrations during soil treatment was 

calculated based on the difference between the average effluent concentration applied to the infiltrative 

surface, CEFF (μg/L), where the effluent was either STE or TFE, and the average soil solution 

concentration, CSOIL (μg/L), at each depth (60, 120, or 240 cm BIS) for each design HLR (2 or 8 cm/d), 

according to the equation: 
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For three compounds – caffeine, triclosan, and NP1EO – comparison of percent removals was 

limited due to concentrations below the reporting level in the TFE and/or soil solution (Table 18). For the 

other compound, NP1EC, with higher STE concentrations than TFE concentrations, a higher average 

percent removal was achieved during soil treatment of STE vs. TFE.  NP1EC percent removal during soil 

treatment of STE ranged from 91 to 97% due to the reduction of high concentrations in STE (~65 μg/L) 

to concentrations generally less than 10 μg/L.  NP1EC soil solution concentrations in test cells receiving 

TFE were also less than 10 μg/L, but the percent removal during soil treatment of TFE was less than 60% 

due to the low input concentrations (<10 μg/L) from the more highly treated TFE.  A similar trend was 

seen for DOC removal (~75 to 85% removal during soil treatment of 30 mg-C/L in STE vs. 60 to 75% 

removal during soil treatment of 16 mg-C/L in TFE).  For the compounds which had similar 

concentrations in STE and TFE (EDTA and NTA), percent removal with depth was similar in soil test 

cells regardless of effluent type.  Removal of NP was low or negligible during soil treatment of both 

effluent types at both HLR. 

Between 88 and 98% removal of sulfamethoxazole from soil solution was measured during 

transport between 60 cm and 120 cm BIS in three of the four test cells in which the compound was 

detected.  In the fourth cell, the same treatment efficiency was achieved by 240 cm below the infiltrative 

surface.  
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6.2.2 Mass Removal 

 

 Total mass removed (Table 19) during the three years of operation was compared for test cells 

varying by effluent type and HLR.  Mass removed, MRem, in milligrams was estimated as the difference 

between the total mass infiltrated at the infiltrative surface, M 0, and the total mass remaining in pore 

water at each depth below the infiltrative surface, MX, where X = 60, 120, and 240 cm: 

 

)56()( 0Re −−= Xm MMmgM  

)66()(*)/()(0 −= LVLgCmgM Eff μ  

)76()(*)/()( −= LVLgCmgM XX μ  

 

where CEff is the average concentration in the applied effluent (μg/L) and CX  is the average concentration 

(μg/L) in the pore water at depth, X (cm), and V is the actual total infiltrated volume (L).  Percent mass 

removal was calculated as: 
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Mass removal of NP through 240 cm of soil treatment was negligible for both effluent types and 

HLRs.  For other compounds, soil test cells receiving a higher HLR (8 cm/d) removed more mass during 

the same depth of soil treatment than test cells receiving a typical HLR (2 cm/d) of the same effluent.  For 

example, during three years of operation, approximately 290 mg of caffeine was removed from soil 

solution within 60 cm of soil treatment in the test cell receiving 8 cm/d of STE as compared to a removal 

of 120 mg of caffeine in test cells receiving 2 cm/d of STE.  In exception, mass removal of EDTA was 

higher at 120 cm BIS in test cells receiving 2 cm/d vs. 8 cm/d (possibly due to pH effects, see Section 

6.1.2.3).   

Soil test cells receiving STE removed more mass during the same depth of soil than test cells 

receiving TFE at the same HLR.  For example, approximately 82 mg of triclosan was removed from STE 

within 240 cm of soil receiving effluent at 8 cm/d as compared to 3.0 mg of triclosan removed from TFE 

within the same depth and applied at the same loading rate.  In exception, EDTA removal, when it 

occurred, and NTA removal was higher in TFE test cells, which had a higher average input concentration 

than STE test cells. 
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Table 19. Estimated total mass removed (mg) from effluent applied to the infiltrative surface during three 
years of soil treatment. [HLR = design hydraulic loading rate; Effluent: STE = septic tank effluent, TFE = 
textile filter effluent; BIS = below infiltrative surface; EDTA = Ethylenediaminetetraacetic acid, NTA = 

nitrilotriacetic acid, NP1EC = 4-nonyphenolmonoethoxycarboxylate, NP1EO = 4-
nonylphenolmonoethoxylate, NP = 4-nonylphenol, NPEs = NP1EC + NP1EO + NP;  none = no mass 

removal.  Values for HLR = 2 cm/d at 60 and 120 cm are average of three test cells.] 
   

HLR, 
Effluent 

Depth 
BIS 
(cm) 

Estimated Mass Removed (mg) during 3 Years of Soil Treatment 

Caffeine Triclosan EDTA NTA NP1EC NP1EO NP NPEs 

2 cm/d 
STE 

60 120 32 none 16 210 6.5 none 200 
120 120 32 86 17 220 7.1 0.40 230 
240 130 35 97 18 230 7.9 8.7 250 

8 cm/d 
STE 

60 290 81 none 42 550 18 none 520 
120 290 82  none 42 550 19 none 560 
240 290 82 220 42 580 18 10 600 

2 cm/d 
TFE 

60 4.0 1.0 none 27 2.0 none none none 
120 4.0 0.59 220 29 28 none none none 
240 3.2 0.57 190 24 18 none none 13 

8 cm/d 
TFE 

60 10 2.8 none 76 62 5.1 none none 
120 10 2.8 4.3 77 88 6.4 none none 
240 10 3.0 590 77 73 6.2 none 62 

 

 

6.3 Occurrence in Ground Water 
 

EDTA, NP1EC, NP, and sulfamethoxazole persisted in soil solution through 240 cm of soil 

treatment at the Mines Park Test Site at concentrations up to 2.4, 7.2, 4.1, and 0.51 μg/L, respectively.  

EDTA was measured in all ground water samples collected from the Test Site at concentrations up to 3.9 

μg/L, which is similar to soil solution concentrations 240 cm BIS.  This suggests that EDTA has the 

potential to persist at concentrations similar to those in soil solution within an OWTS soil treatment unit 

through additional vadose zone soil to ground water.  NP1EC was present in concentrations from less 

than the reporting level (1 μg/L) to 3.1 μg/L.  A reduction in NP1EC concentration between soil solution 

240 cm BIS and ground water occurred, which could be due to biotransformation during the additional 

travel time in the vadose zone prior to ground water recharge.  NP concentrations were below the 

reporting level (2 μg/L) in ground water samples, which may be due to sorption to vadose zone soil and 

aquifer sediments.  Ground water samples were not analyzed for sulfamethoxazole.  The concentrations of 

the other target trace organic contaminants (caffeine, triclosan, NTA, and NP1EO) were below the 

reporting level in ground water samples.  Additional sampling of hydrologically-linked OWTS - ground 

water systems is needed to further assess receiving environment impacts. 
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6.4 Whole System Treatment 

 

 At the Mines Park Test Site, treatment of residential wastewater through septic tanks and 240 cm 

of vadose zone soil, regardless of HLR (Figure 15, Table 20), resulted in 95% or greater removal 

[determined as the difference between average concentrations in Tank 1 wastewater (location 1, Figure 4) 

and soil solution 240 cm BIS] for caffeine, triclosan, EDTA, NTA, and NP1EC (and to <RL for NP1EO).  

Removal of NP was less than 35%.  Low removal (≤ 35%) of most compounds occurred during tank-

based treatment [determined as the difference between average Tank 1 and Tank 2 compartment 2 

wastewater concentrations (Figure 4 locations 1 and location 3, respectively)] with the exception of 

NP1EC (74% removal).  The majority of the treatment occurred during soil infiltration and percolation 

through the vadose zone.  Greater than 90% removal (determined as the difference between 

concentrations in STE and soil solution) occurred during 240 cm of soil treatment at the Test Site for all 

target compounds except NP (<50% removal).  For all compounds except EDTA, the high removal was 

achieved within 60 cm of soil treatment.  To achieve >90% removal of EDTA, 120 cm (at the low HLR) 

and 240 cm (at the high HLR) of soil was needed.  

Additional treatment of STE by a textile biofilter prior to soil application resulted in similar 

whole system treatment results (Figure 16, Table 20) as those observed in the conventional tank and soil 

treatment system.  At the Mines Park Test Site, treatment through septic tanks, a textile biofilter, and 240 

cm of soil, regardless of HLR, resulted in greater than or equal to 88% removal of all target trace organic 

contaminants with the exception of NP (< 35% removal).  High removal efficiencies had already been 

achieved during biofilter treatment (determined as the difference between STE and TFE concentrations) 

for all target compounds except for EDTA and NTA (both <1% removal).  Biofilter removal results from 

high-concentration operational systems in Colorado differed for NTA (average removal = 76%) and 

NP1EC (increase in ∑NPEC concentrations between STE and TFE).  Sixty to 120 cm of soil was needed 

to reduce NTA concentrations to <RL, and, similar to the conventional system, to achieve >90% removal 

of EDTA, 120 cm (at the low HLR) and 240 cm (at the high HLR) of soil was needed. 
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CHAPTER 7 

INTEGRATION OF RESULTS AND IMPLICATIONS 

 

Modern OWTS are designed and managed with the primary goal of protecting human health 

while minimizing environmental impacts.  Pathogens and nutrients have traditionally been the primary 

constituents of concern (for example, pathogens can cause illness in exposed populations and excess 

nitrogen and phosphorus can cause eutrophication in receiving surface waters).  An OWTS management 

strategy to protect water quality and public health should consider, among other things, four aspects: 1) 

the occurrence and levels of contaminants from various source types, 2) design of the system for 

treatment of these contaminants, 3) mass loading of any untreated contaminants to the receiving 

environment, and 4) the possible exposure pathway(s) and potential effects.  Results from this research 

are integrated in this chapter to provide guidance for these management considerations regarding trace 

organic contaminants.  

 

7.1 Occurrence and Levels in Onsite Wastewaters 

 

 Trace organic contaminants occur in OWTS wastewaters frequently (21/24 target compounds 

identified at least once, 10 detected in greater than 65% of samples from 30 systems) and at 

concentrations that range over three orders of magnitude, from levels similar to those measured in WWTP 

influents (ng/L to low μg/L) to much higher levels (mg/L).  WWTP influent composition is relatively 

consistent regarding trace organic contaminants due to the large number of contributing sources which 

attenuate fluctuations in individual sources contributing to the wastewater stream.  In contrast, OWTS 

wastewaters originate from one source or a small number of sources and the composition depends on the 

source type and activities.  In this study, in general, non-residential wastewaters had more trace organic 

contaminants at higher concentrations than residential sources.  This is likely due to differences in water- 

and chemical-using activities at the source.  Therefore, knowledge of the wastewater source, especially 

the water and chemical-using activities, can provide some initial information regarding the types and 

levels of trace organic contaminants that may be present in anaerobic wastewaters within septic tanks in 

an OWTS. 

     Wastewater is typically composed of human waste, food waste, and consumer product 

chemicals used for hygiene and cleaning practices that are transported in water from the source to an 

OWTS.  Different types of trace organic contaminants originate from different activities (Table 21).  

Human waste primarily originates from toilets and urinals, and may be composed of fecal sterols such as 
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cholesterol and coprostanol and excreted parent and metabolite pharmaceuticals.  Food waste originates 

from garbage disposals, grease collectors, kitchen sinks, and dish washers, and is composed of chemicals 

naturally present in food (i.e. caffeine) or synthetically added (i.e. preservatives such as EDTA, butylated 

hydroxyanisole, BHA, and butylated hydroxytoluene, BHT).  Consumer product chemicals originate from 

clothes washers (i.e. laundry detergents), dish washers (i.e. dish detergents), showers (i.e. shampoo, 

soaps, lotions, fragrances), and general cleaning activities (i.e. all-purpose cleaners, toilet bowl 

deodorants, antimicrobials in toothpastes, soaps, etc.).  Rinse water originates from faucets and leaks and 

may transport disposed household items such as unused pharmaceuticals or chemicals (i.e. bisphenol A) 

that may leach from the plumbing and piping infrastructure. 

 

Table 21. Potential organic compounds and classes that may be present in wastewater originating from 
various source activities. 

 
Wastewater 
Composition Source Activity Potential Classes of 

Organic Contaminants 
Example of Individual 
Organic Contaminants 

Human waste Toilet, urinal 
Sterols Cholesterol, coprostanol 
Pharmaceutical residues Sulfamethoxazole 
Pharmaceutical metabolites 1,7-dimethylxanthine 

Food waste  Garbage disposal, 
grease collector 

Stimulants Caffeine 
Preservatives BHA, BHT 

Consumer 
product 
chemicals 

Clothes washer, 
dishwasher, 
shower, faucets 

Fragrances Menthol, camphor  
Soaps/Detergents Nonylphenolethoxylates 
Antimicrobials Triclosan 
Deodorizers 1,4-Dichlorobenzene 

Transport 
water Faucets, leaks 

Plasticizers (leaching) Bisphenol A 
Pharmaceuticals (unused 
disposal) Sulfamethoxazole, codeine 

 

  Knowledge of the distribution of chemical- and water-using activities at the source contributing 

to the wastewater stream can provide information regarding the likelihood of occurrence and the levels of 

various trace organic contaminants in OWTS wastewater.  For example, typical indoor water use for a 

residential source is 30% toilets, 30% dish and clothes washing, 20% bathing, 10% faucets, and 10% 

miscellaneous (Crites and Tchobanoglous 1998).  Therefore, OWTS wastewater originating from a 

residential source is expected to be composed of a dilute mix of biogenic (sterols) and anthropogenic 

chemicals (pharmaceuticals and consumer product chemicals), as was found during the reconnaissance 

survey.   

Sources whose wastewater primarily originates from restroom use (e.g. highway gas station 

convenience stores, campgrounds, parks) will likely have high levels of sterols, pharmaceuticals and 

pharmaceutical metabolites, and possibly hand soap chemicals and bathroom cleaning products in their 
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OWTS wastewaters.  In this research, gas station convenience store wastewaters had the highest 

concentrations of 14 pharmaceuticals, as well as elevated levels of the hand soap antimicrobial triclosan 

and the toilet bowl deodorizer 1,4-dichlorobenzene.   

Sources with intense and frequent cleaning practices (e.g. human or animal institution, food 

establishment, vacation residence) will likely have elevated levels of consumer product chemicals such as 

detergents, antimicrobials, and fragrances in their OWTS wastewaters.  For example, veterinary hospital 

wastewater, which mainly originates from washing and disinfecting practices, had high levels of 

surfactant metabolites, including 4-t-octylphenol and 4-t-octylphenolethoxylates at concentrations up to 

20 times greater than other sources.  These are examples of insights that can be gained concerning the 

types of trace organic contaminants that are likely to be present in wastewater originating from different 

sources.  Actual wastewater compositions will depend on the specific products in use within a particular 

residence or establishment and the actual chemical- and water-using activities, which will differ between 

sources and at the same source over time.  For example, in this study mixed source (e.g. originating from 

a number of different businesses in a retail center) wastewater composition varied over time as businesses 

changed ownership.   

Trace organic contaminants that are likely to be present in most any septic tank wastewater based 

on their frequent (>65%) occurrence in Colorado septic tank wastewater include the sterols coprostanol 

and cholesterol, the metal chelating agents EDTA and NTA, the stimulant caffeine, the surfactant 

metabolites NP, ∑NPEO, ∑NPEC, the disinfectant 4-methylphenol, and the antimicrobial agent triclosan. 

Of these, the surfactant metabolites, which are weakly estrogenic, and the antimicrobial, which may 

impact the development of antimicrobial-resistant bacteria, have the greatest potential risk in typical 

receiving environments.  Other trace organic contaminants that were not analyzed for in this study may 

also occur in septic tank wastewater and be of environmental relevance. 

   

7.2 Treatment of Trace Organic Contaminants 

 

 Knowledge of the source helps to identify the types and levels of compounds present in 

wastewater.  An assessment of the removal efficiencies of trace organic contaminants by conventional 

and advanced onsite treatment units will aid in selection and design of an OWTS. 

 

7.2.1 Conventional Onsite Treatment 

 

 The most common OWTS treats residential wastewater through one or more septic tanks in series 

followed by soil infiltration (e.g. 60 to 120 cm of vadose zone soil) prior to recharge of the underlying 
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ground water.   This type of OWTS can reduce septic tank wastewater concentrations of many trace 

organic contaminants (e.g. caffeine, triclosan, EDTA, NTA, NP1EC, NP1EO) by greater than 95% (or to 

< RL), while others may be more recalcitrant (< 50% NP removal).  These results are particularly 

applicable to OWTS utilizing sandy loam soil that is common throughout the Colorado Front Range 

region.     

 

7.2.1.1 Septic Tank Treatment 

 

Some removal of trace organic contaminant concentrations in wastewater may occur during septic 

tank treatment due to anaerobic biotransformation and sorption to solids with subsequent settling.  In this 

research, removals during septic tank treatment were typically less than 50%.  The types of compounds 

likely to be removed are compounds with a high organic carbon partition coefficient (Koc) or a related 

parameter, octanol-water partition coefficient (Kow), and low water solubility (Cw
sat).  Compound groups 

with these physicochemical properties include sterols (e.g. cholesterol and coprostanol), antimicrobials 

(e.g. triclosan and triclocarban), and some phenols (e.g. 4-t-octylphenol) as well as other hydrophobic 

compounds. For example, 38 ± 22% removal of triclosan, which is a hydrophobic compound with a log 

Koc = 3.96 – 4.69, was observed during tank-based treatment in full-scale OWTS.  Trace organic 

contaminants that are not removed by sorption may be discharged to the soil at concentrations similar to 

influent septic tank wastewater concentrations.  For example, removal of EDTA (log Kow = -3.86, Cw
sat = 

1000 mg/L) was negligible during tank-based treatment (removal = 12 ± 12%) in operating systems.   

Based on relevant removal mechanisms, important design features of a septic tank unit to help 

achieve for the greatest removal of trace organic contaminants are: 1) a long hydraulic residence time 

(e.g. multiple days) to allow for sorption and settling of solids, 2) a long solids retention time (e.g. months 

to years) to enhance anaerobic biotransformation, and 3) the containment of solids within the septic tank 

to minimize solids discharge (and therefore, discharge of hydrophobic trace organic contaminants sorbed 

to the solids) to the next treatment unit.  Many design requirements for full-scale systems already lead to 

some optimization these design features.  For example, Colorado systems are designed according to State 

code to achieve a minimum of a 30-hour hydraulic retention time.  Septic tank solids typically accumulate 

for 6 months to more than three years between tank pumping events.  Many states require multi-

compartment septic tanks or multiple septic tanks in series to maximize solids separation and retention 

and thereby minimize solids discharge to the soil treatment unit.  

However, water usage will vary from the design usage, and the actual tank hydraulic retention 

time may be shorter or longer than the design hydraulic retention time (e.g., shorter during periods of 

relatively more intense source activity (i.e. during tourist season at a restaurant), or for extended periods 
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of time (i.e. if there is a change in ownership with different water use practices).  The change in water 

usage could be estimated by the management entity during a change of property ownership, and if the 

new water usage is expected to be significantly higher such that it would consistently decrease the 

hydraulic retention time, the system may need to be modified (e.g. with the addition of septic tanks).  

While an extended solids retention time is good for anaerobic digestion, tank pumping should occur 

frequently enough so as not to adversely affect system performance (e.g. by an overflowing tank).  The 

frequency of pumping is determined by the system owner and depends on the source- it may be as often 

as every few months in a commercial system or more than three years for a residential system.  Older 

systems are more likely to utilize a single compartment septic tank.  An owner could have a filter or 

screen retrofit on the effluent pipe of all operational single compartment tanks as a relatively inexpensive 

and easy way to manage solids discharge.   

   

7.2.1.2 Soil Treatment 

 

The majority of removal of many trace organic contaminants in a conventional OWTS will occur 

during soil infiltration and percolation through the vadose zone.  Likely removal mechanisms include 

volatilization, sorption, and aerobic biotransformation.  In this research, greater than 90% removals of 

STE concentrations of many trace organic contaminants were achieved within 240 cm of sandy loam soil 

treatment.  Compounds with a high Henry’s Law constant (KH) such as VOCs (e.g. benzenes, toluenes, 

xylenes) may be removed by volatilization through solution-air and soil-air interfaces at the infiltrative 

surface and in the vadose zone.  Hydrophobic compounds, such as those which can be partially removed 

during septic tank treatment, can partition from solution to organic matter in the infiltrative surface 

biofilm and in the soil.  Acclimated microbial communities in the biofilm and in the soil below may 

biotransform amenable compounds.  These include compounds that have been previously shown to 

aerobically biodegrade in soil microcosms and activated sludge systems, such as caffeine and NP1EO.  

For example, at Mines Park caffeine removal was >99% during transport through 60 cm of aerobic sandy 

loam soil as compared to <20% during anaerobic septic tank treatment.   

Compounds that are not removed from effluents by sorption, volatilization, or biotransformation 

may be transported in soil solution as it migrates through the vadose zone.  At Mines Park, EDTA, which 

appears to be biodegradable only in alkaline environments, persisted through at least 60 to 120 cm of 

acidic soil at concentrations similar to STE concentrations.  Concentrations of transformation products 

may increase during shallow soil treatment as parent compounds degrade.  For example, concentrations of 

NP, a degradation product of NP1EC, NP1EO, and other NPEs, increased by 200 to 500% during the first 

60 cm of soil. 
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Non-residential wastewaters often had much higher concentrations of trace organic contaminants 

than residential wastewaters, and the treatment effectiveness achieved during infiltration and percolation 

through soil receiving these non-residential effluents has not been investigated.  Results from the Mines 

Park soil test cell receiving a higher mass loading of trace organic contaminants (by applying a higher 

HLR of residential STE) may provide some information regarding the soil treatment of non-residential 

wastewater.  Mass removal in this test cell was generally higher than that of the test cells receiving a 

typical HLR, suggesting that soil treatment units may be capable of treating higher-strength effluents and 

removing trace organic contaminants as effectively as for lower-strength effluents.  The additional carbon 

and nutrient loading in a higher-strength effluent may enhance the soil microbial community and lead to 

fortuitous degradation of trace organics.   

The soil treatment unit should be designed, therefore, to optimize volatilization, sorption, and 

biotransformation.  A key component is the natural development of a biofilm of organic-rich particulate 

matter and microorganisms at the infiltrative surface and extending a few centimeters or deeper into the 

native soil.  Hydrophobic trace organic contaminants in the applied effluent should partition into the 

organic rich biofilm and may be biotransformed by the microbial community there.  As particulates 

accumulate and the biofilm develops, the infiltration rate normally decreases to a fraction of the hydraulic 

conductivity of the native soil.  This maintains aerobic conditions in the vadose zone below the location 

of soil infiltration and vadose zone travel times can enhance removal processes such as sorption to 

organic soil surfaces, aerobic biotransformation, and soil solution/gas exchange.  Disinfection of treated 

effluent prior to soil application, which may be a treatment consideration to minimize risk regarding 

pathogenic organisms, is not recommended for treatment of trace organic contaminants due to the 

importance of a biologically-active soil treatment zone. 

The HLR should be high enough to enhance development of the biofilm but low enough to 

maintain an average daily infiltration rate similar to the daily application rate.  In this research, vadose 

zone soil solution concentrations were similar in soil treatment units with infiltration rates 2 to 3 times 

higher than in soil treatment units with infiltration rates similar to a typical design HLR.  Therefore, the 

results suggest that the design HLR could be increased (for example, from 2 cm/d to 4 cm/d) without 

adversely affecting the treatment capacity of the soil regarding trace organic contaminants.   

Other design considerations include the effluent delivery method, the surface area layout, the soil 

properties, and the vadose zone depth.  The use of a dosing delivery method rather than traditional gravity 

flow likely enhances the development of a more uniform biofilm over the entire infiltrative surface, which 

can help maximize the surface area for infiltration and soil treatment.  Narrow and shallow infiltration 

trenches may enhance gas exchange between the soil solution and the atmosphere as compared to an 

infiltration bed or pit.  While the biofilm development and soil pore clogging controls the infiltration rate 
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capacity and is the location where much treatment occurs, the vadose zone soil properties are still 

important to system design and performance.  In particular, preferred soils are those with appreciable 

organic matter contents and sufficient permeability and structure for air and water flow.  Many trace 

organic contaminants were removed from soil solution within 60 cm of vadose zone transport through 

sandy loam soil, but others persisted through 240 cm of soil.  The minimum necessary depth of the 

vadose zone to achieve adequate treatment of trace organics is difficult to generalize and depends on 

factors such as the types and levels of compounds present, the extent of additional treatment that can 

result during ground water recharge and transport, the proximity to surface water or a supply well, and 

no-effect levels in exposed populations.   

 

7.2.1.3 Qualitative Prediction of Compound Behavior  

 

 Target compounds were selected for the Mines Park research with one or more of the following 

characteristics: they are likely to be present in onsite wastewater (based on results from the 

reconnaissance survey), they have known or potential adverse effects or may be an appropriate indicator 

compound, and they are amenable to the sample collection and analysis methodologies employed during 

the Mines Park Test Site characterization studies.  The ability to qualitatively predict the fate of these and 

other trace organic contaminants during onsite treatment may be a useful tool for engineers, practitioners, 

and regulators, especially given the time-consuming analysis of trace organic contaminants.  Important 

characteristics that determine a compound’s fate during onsite treatment include its ionic character at 

environmental pH values (pKa), hydrophobicity (Kow), vapor pressure and water solubility (KH), and 

biodegradability (rate constant, k, or half life, t ½).  Compounds that are ionic at environmental pH values 

may sorb to soil surfaces through electrostatic interactions (to either positive or negative surfaces).  A 

hydrophobic compound (e.g. log KOW > 2) may be removed during onsite treatment by sorption to septic 

tank solids, biofilm organic matter, and soil organic matter.  A compound with a high vapor pressure and 

low water solubility (e.g. KH > 0.01 atm-L/mol) may be removed during onsite treatment from the 

aqueous phase to the gaseous phase by volatilization during infiltration and percolation through the soil 

vadose zone.  A biodegradable compound may be removed during onsite treatment by aerobic 

biotransformation during infiltration and percolation through the vadose zone by acclimated biofilms and 

soil microbial communities.  The biodegradability of a compound during soil treatment may be estimated 

based on published values, e.g. an apparent aerobic 1st-order biodegradation half life, t ½, in activated 

sludge or soil systems, and compared to an estimated vadose zone travel time, e.g. ~15 d travel through 

60 cm of vadose zone soil receiving 2 cm/d HLR with a porosity ~ 0.5.  
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A preliminary prediction diagram (Figure 17) was adapted from methodology used by Bellona 

(2007) as a first attempt to develop a framework to qualitatively predict the fate of organic compounds 

during onsite treatment, with the following boundary conditions: 1) the diagram considers conventional 

onsite treatment only (e.g. through septic tank(s) and soil, not including additional engineered unit 

operations), and 2) only compounds that are neutral at environmental pH values are considered.  In 

applying the logic presented in Figure 17, the predicted removal was generally similar to the observed 

removal of target compounds monitored at Mines Park (Table 22).  For example, at pH < 7.9, triclosan is 

primarily a neutral hydrophobic compound (log KOW = 4.76) with low volatility (KH = 5.0 x 10-6 atm-

L/mol) that is readily biotransformed in aerobic soil and activated sludge (Ying et al. 2007, Heidler and 

Halden 2007, Bester 2003, Singer et al. 2002).  Triclosan falls into Category 3 in the diagram, with >75 % 

expected removal during onsite treatment due to sorption and biotransformation.  Actual removal during 

treatment through septic tanks and 60 cm of soil at the Mines Park Test Site was greater than 99%.  In 

contrast, sulfamethoxazole is a non-hydrophobic (log KOW = 0.89), non-volatile (KH = 5.8 x 10-13 atm-

L/mol) compound that is not biodegradable in neutral or acidic environments.  Sulfamethoxazole falls 

into Category 8 in the diagram, with low removal (<25%) attributed to the three relevant mechanisms.  

Sulfamethoxazole persisted through 240 cm of soil treatment at the Mines Park Test Site.   

The diagram shown in Figure 17 is a preliminary attempt at a prediction tool based on the current 

knowledge of trace organic contaminant fate during onsite treatment.  Actual removal efficiencies may fit 

more of a spectrum than a category system.  For example, hydrophobic sorption may only become 

relevant to onsite removal for compounds with a log KOW greater than 3.  The sorption distribution 

coefficient, KD, or organic carbon partition coefficient, KOC, may be better predictors of sorption during 

onsite treatment; however, values for KOW are more widely available, and often KD and/or KOC are 

empirically derived from KOW.  The diagram considers aerobic biodegradation only, under the assumption 

that anaerobic biodegradation occurs much more slowly, if at all, compared to aerobic biodegradation.  

Also, the biodegradability is based on literature values that may or may not be relevant to onsite systems 

(e.g. 1st-order vs. zero-order kinetics, activated sludge vs. a soil system).  The extent of removal by each 

of these mechanisms – sorption, volatilization, and biodegradation – depends not only on the 

physicochemical properties of the compound but also on environmental conditions, many of which were 

discussed in Sections 7.2.1.1 and 7.2.1.2.  For example, the actual vadose zone travel time will vary based 

on infiltration rate, porosity, water content, depth to the water table, etc.  Additional research assessing 

the relative importance of these and other chemical and treatment properties is needed to refine this 

prediction diagram prior to its routine and reliable use as a management tool.   
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 7.2.2 Additional Engineered Treatment 

 

Addition of an advanced engineered unit operation to the treatment train may be considered when 

conventional treatment is not expected to sufficiently protect environmental and human health.  For 

example, textile biofilters are used in mountainous regions in Colorado when additional nitrogen removal 

is needed prior to discharge to a fractured bedrock soil system.  Additional engineered treatment through 

a textile biofilter can enhance removal of many trace organic contaminants as compared to septic tank 

treatment alone likely due to volatilization, sorption and filtration of sorbed particulates, and aerobic 

biotransformation.  In the reconnaissance survey, operating systems with additional aerobic treatment had 

lower median concentrations compared to anaerobic tank treatment (p<0.05, Mann-Whitney U test) for 10 

of the 12 compounds with median concentrations greater than the reporting level, regardless of source.  In 

systems enhancing volatilization, such as aerobic units and spray recirculation systems, additional 

removal is expected of volatile compounds with a high Henry’s law constant (KH).  For example, the 

greater removal of 1,4-dichlorobenzene (KH = 2.40 atm-L/mol) during biofilter treatment (98%) as 

compared to tank treatment (40 ± 26%) is likely due to enhanced volatilization through increased air-

water exchange and turbulence.   

In systems enhancing sorption and filtration of particulates, such as sand, peat, and textile filters, 

additional removal is expected of compounds with a high log KOC and log KOW.  In systems enhancing 

aerobic biotransformation, such as bioreactors and biofilters, additional removal is expected of 

compounds that can be degraded by an acclimated microbial population in similar environments such as 

WWTP activated sludge units (e.g. caffeine, NP1EO).   The greater removal of triclosan during biofilter 

treatment (92 ± 1%) as compared to tank treatment (38 ± 22%) in operational systems is likely due to 

aerobic biotransformation and filtration of particulates containing sorbed triclosan.   

Compounds that are not removed from effluents by sorption, volatilization, or biotransformation 

may persist during additional engineered treatment such as biofilter treatment.  EDTA persisted through 

biofilter treatment in operational systems and at Mines Park.  Concentrations of transformation products 

may increase during biofilter treatment as parent compounds degrade.  For example, ∑NPEC, an acidic 

surfactant degradation product, persisted as the predominant NPE metabolite in aerobic effluents from 

high use sources.   

While TFE has a higher quality regarding many trace organic contaminants as compared to STE, 

no differences in soil solution concentrations 60 cm BIS were observed in soils receiving STE vs. TFE at 

similar HLRs.  Therefore, there is no apparent added benefit to including a textile biofilter in an OWTS 

design regarding the removal of trace organic contaminants from typical residential wastewater if the 

effluent is applied to a well-designed and operated soil treatment unit utilizing an appropriate soil with an 
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adequate depth of vadose zone (e.g, sandy loam soil profile with >120 cm to groundwater).  In situations 

when treatment within the vadose zone may be limited (e.g. shallow ground water table, unacceptably fast 

or slow infiltration rate, nearby well or surface water, etc.), use of a textile biofilter can provide a higher 

quality effluent for some trace organic contaminants that is similar to soil solution 60 cm below an 

infiltrative surface receiving STE (Table 23).  For example, at the Mines Park Test Site, >97% removal of 

caffeine and >98% removal triclosan occurred during textile biofilter treatment of STE as compared to 

>99% removal of both compounds during 60 cm of soil treatment of STE.  However, differences between 

a textile biofilter and soil regarding treatment efficiencies of other compounds, such as NP, confirm that a 

textile biofilter can not be considered a replacement for a soil treatment unit.   

 

Table 23. Comparison of percent removal of trace organic contaminants from septic tank effluent 
(STE) through textile biofilter treatment or 60 cm of soil. [<RL = less than the reporting level. a Average 

NTA removal in high-concentration operational systems.] 
Compound Percent Removal during Treatment of STE 
  Textile biofilter 60 cm of soil 
Caffeine 97 <RL (>99) 
Triclosan 98 <RL (>99) 
EDTA Negligible Negligible (50% concentration increase) 
NTA 76 a 95 
NP1EC 92 86 
NP1EO <RL (>63) <RL (>63) 
NP 50 Negligible (>200% concentration increase) 

 

7.2.3 Recalcitrant Compounds 

 

Compounds that are not removed by volatilization, sorption, or biotransformation are expected to 

persist through OWTS.  For example, the primary removal mechanism of EDTA is photolysis, which is 

not relevant in the vast majority of OWTS, and EDTA persisted at concentrations similar to input 

concentrations through engineered treatment and soil treatment (under acidic or neutral conditions).   

“Removal” from the aqueous phase can be different from “treatment” of an organic compound.  

“Removal” may be a phase transfer (i.e. volatilization into the gaseous phase), a chemical transfer (i.e. 

adsorption to soil), or a biological transfer (i.e. to a degradation product), while “treatment” can refer to 

complete mineralization of a compound (i.e. conversion to carbon dioxide and water).  In some cases, a 

biological transfer may result in the accumulation of a more toxic degradation product.  For example, 

while moderate removal (25-75%) by sorption of NP is predicted (Category 4, Figure 17, Table 22), 

actual concentrations of NP increased 200 to 500% during shallow soil treatment at the Mines Park Test 

Site.  This is likely due to the biotransformation of NP1EC and other NPEs to NP at a greater rate than the 

biotransformation and/or sorption of NP to organic matter.  The results suggest that effective treatment of 
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NPEs during onsite treatment may require an alternative treatment design.  One possible design might 

utilize an anaerobic septic tank followed by an aerobic bioreactor (to convert all NPE to NP1EC) which 

discharges into a second anaerobic septic tank with an extended hydraulic residence time and an 

abundance of solids (to convert all NP1EC to NP with subsequent sorption to the organic matter) prior to 

discharge to the soil (where final sorption of NP occurs near the biofilm).  Prior to implementation of 

OWTS design changes for individual chemicals, however, a management strategy should also consider 

loading to and additional treatment during ground water recharge and the exposure pathways and effect 

levels. 

 

7.3 Mass Loading to Receiving Environments 

   

 While OWTS can be effective in reducing septic tank wastewater concentrations of trace organic 

contaminants by greater than 95%, some contaminants can persist in measureable concentrations during 

transport through 120 and 240 cm of sandy loam soil (Table 24).   Therefore, receiving environments 

such as ground waters located 240 cm or less below the infiltrative surface may be impacted by some 

trace organic contaminants originating from a typical OWTS.  In Colorado and many other U.S. states, 

the minimum required distance to ground water is 120 cm below the infiltrative surface of an onsite soil 

treatment unit.  EDTA, NP, and NP1EC were regularly measured in soil solution 120 cm below the 

infiltrative surface of a typically operated (HLR = 2 cm/d) residential OWTS at concentrations around 1, 

4, and 4 μg/L, respectively, indicating their potential to reach shallow ground water.  Soil treatment units 

loaded at a typical HLR (2 cm/d) can maintain a long-term acceptance rate high enough to hydraulically 

process all effluent applied, as was seen in the Mines Park test cells after three years of operation.  Mass 

loading rates to the underlying ground water were estimated assuming that all of the volume applied to 

the soil infiltrative surface reaches the underlying ground water.   

In a household producing 1000 L of wastewater per day (typical of a four-person home) that is 

treated by an OWTS with an actual HLR of 2 cm/d, daily mass loadings to an underlying ground water 

120 cm below the infiltrative surface may reach 1 mg of EDTA, 4 mg of NP1EC, and 4 mg of NP.  

Potential watershed-scale loading can be estimated assuming this household is located in an OWTS-

reliant residential community.  For example, in a community with 1000 residences located on 2023 m2 

(0.5 acre) lots that are each served by an OWTS, total daily mass loading to the underlying ground water 

from the 2.02 km2 (500-acre) community could reach 1 g of EDTA, 4 g of NP1EC, and 4 g of NP.  Other 

compounds may also persist and reach ground water such as sulfamethoxazole (detected at concentrations 

up to 4 μg/L in Mines Park soil solution 120 cm BIS) and carbamazepine (Carrara et al. 2008, Godrey et 

al. 2007). 
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Actual mass loading to receiving environments may be less than the calculated loading based on a 

number of real conditions that may differ from the assumptions above.  The average number of people per 

U.S. home is between two and three rather than four, so the average volume of effluent produced per 

household may be lower.  Some volume losses may occur during soil infiltration (Paul et al. 2007), 

reducing the recharge volume.  Treatment within a different soil, such as a high organic carbon soil, may 

be greater due to additional sorption and biotransformation.  An increased vadose zone residence time 

may allow for removal processes (i.e. volatilization, sorption, biotransformation) to occur to a greater 

extent.  The ground water table is often much deeper than the required 120 cm BIS.  OWTS use in low-

density regions as compared to the example 1000-residence community is common, resulting in lower 

watershed-scale loadings.   

Conversely, potential impacts to the underlying ground water may be greater than those 

calculated above.  High water table levels in coastal areas may be near the ground surface. All of the 

target compounds (except caffeine) were detected at least once in Mines Park soil solution 60 cm BIS, 

and concentrations of EDTA reached 89 μg/L (in a soil test cell receiving 8 cm/d of TFE).  In a system 

with different soil conditions (e.g. higher hydraulic conductivity, lower organic carbon content) and 60 

cm or less of unsaturated soil, faster travel times to the underlying ground water may result in higher mass 

loadings.    

   

7.4 Exposure Pathways and Effects  

  

 Regardless of loading rates to the environment, adverse effects on organisms can only occur 

through exposure to a contaminant.  Two exposure pathways- encompassing the aquatic environment and 

the particulate-bound fraction- are presented, and potential effects are discussed. 

 

7.4.1 Aquatic Environment 

 

OWTS effluents recharge the local receiving environment which is often the underlying ground 

water.  The ground water, in turn, may supply water to the local population and/or feed nearby surface 

waters.  Exposure of humans to pathogenic organisms present in drinking water obtained from a ground 

water supply well is often a primary concern regarding the design and performance of OWTS.  The 

effects of trace organic contaminants, such as endocrine disrupting compounds, on humans are complex 

to understand and currently unknown, therefore the risk to humans is also unknown.     
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Surface water/ground water interactions may be especially important in regions where 

concentrated OWTS are located near streams.  Shallow ground water can discharge to streams within 5 

years of recharge (Szabo et al. 1996, Modica et al. 1998), a time frame that may not be adequate for 

degradation of some recalcitrant compounds.  Exposure to NP can disrupt the normal function of the 

endocrine system of aquatic organisms, as measured with indicators such as an increase in plasma 

vitellogenin levels, though there is variability in the literature regarding the lowest no-effect 

concentration.  Current literature suggests that concentrations around 10 μg/L have adverse effects 

(Knoebl et al. 2004, Hemmer et al. 2001, Jobling et al. 1996), though one study reported effects from 

exposure to concentrations of NP as low 2 μg/L (Zha et al. 2007).  NP1EO and NP1EC have similar 

estrogenic potencies as NP (Routledge and Sumpter 1996).  The EPA has established toxicity-based water 

quality criteria for NP (USEPA 2005), with the 4-day average concentration in freshwater systems not to 

exceed 6.6 μg/L.  No water quality criteria have been established for NP in ground water and no U.S. 

endocrine disruption-based water quality criteria have been established for trace organic contaminants, 

though there is an awareness of the need (USEPA 2008). 

To assess potential effects, three exposure scenarios are considered by varying the Dilution 

Attenuation Factor, DAF (UPEPA 1996), which is the ratio of the trace organic contaminant 

concentration in soil solution to its concentration at the point of exposure from recharged ground water 

and/or surface water.  In the first scenario (worst-case), the shallow ground water (i.e. 120 cm BIS) 

recharged by OWTS effluent directly supplies a nearby well or surface water with short travel times 

and/or minimal additional treatment within the aquifer.  For example, compounds have the potential to 

persist during anaerobic ground water transport (Ying et al. 2008, Ahel et al. 1996) at concentrations 

similar to or higher than those in the septic tank effluent (Swartz et al. 2006).  Under these conditions, a 

DAF of 1 is assumed, and concentrations measured in OWTS soil solution (e.g. up to 14 μg/L NP and up 

to 8 μg/L NP1EC) could persist in ground water or surface water.  At these concentrations, some effects 

on exposed aquatic organisms could occur. 

In a second scenario (best-case), drinking water wells and surface waters are supplied by an 

aquifer that is not in the OWTS effluent recharge zone.  Under these conditions with no direct hydrologic 

connection, the DAF is not relevant, and no impacts from OWTS in ground waters supplying wells or 

surface waters is expected, resulting in no adverse effects on exposed organisms. 

In a third scenario (real-world), supply wells and/or surface waters are located some distance 

down gradient of the OWTS (e.g. 100 ft. and 50 ft., respectively, as per Colorado regulations).  Once the 

OWTS-derived compounds reach ground water, their concentrations can be further reduced by dilution 

and mixing during recharge and through sorption and aerobic biotransformation (Ying et al. 2008, Ahel et 

al. 1996), resulting in a DAF greater than 1.  Under these conditions, concentrations that are lower than 
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soil solution concentrations are expected in ground water and surface water.  For example, assuming a 

DAF of 10 results in NP concentrations of 1.4 μg/L or less in ground water or surface water at the point 

of exposure.  NP concentrations were <2 μg/L in Mines Park ground water located 360 to 680 cm BIS 

and 0 to 100 m away from the soil test cells.  At these levels, no adverse effects on exposed populations 

are expected to occur. 

To complicate the issue, however, studies have indicated an additive effect from multiple 

endocrine disruptors, including several of the compounds studied here, even when individual compound 

concentrations were below an observed effect level (Brian et al. 2007, Brian et al. 2005).  Conversely, low 

concentrations of NP (5 μg/L) had a positive effect on reproductive behavior, as evidenced by an increase 

in nest-holding ability of exposed fathead minnows, while exposure to higher levels of alkylphenolic 

mixtures had negative effects (Bistodeau et al. 2006).  The assessment of potential adverse effects on 

human and aquatic organisms from trace organic contaminants in OWTS will continue to evolve as the 

assessment of acute and chronic effects from individual compounds and mixtures of compounds on 

ecosystems and humans evolves.  

 

7.4.2 Particulate-Bound Fraction 

 

A secondary concern regarding trace organic contaminant occurrence in onsite systems is 

associated with the accumulation of parent compounds or their metabolites on septic tank solids and soil 

surfaces.  Septic tank solids from five reconnaissance survey sites contained concentrations of 34 trace 

organic contaminants, including NP, NP1EO, and triclosan at concentrations up to 1,800,000 μg/kg, 

44,000 μg/kg, and 19,000 μg/kg, respectively.  Septic tank solids are periodically pumped and treated for 

discharge to a landfill or for use as biosolids.  Biosolids that can be land-applied have the potential to 

impact nearby surface waters through overland transport.   

Trace organic contaminant removal from soil solution may be through hydrophobic partitioning 

onto soil organic matter surfaces, resulting in the accumulation of hydrophobic compounds in the 

subsurface.  In biosolid-amended agricultural soil (Kinney et al. 2008), trace organic contaminants 

including NP and triclosan that were present in the soil also bioaccumulated in terrestrial organisms 

(earthworms).  Of 77 target compounds, triclosan had the highest bioaccumulation factor (BAF = 27).  

The movement and bioaccumulation of trace organic contaminants from soil surfaces and land-applied 

biosolids to earthworms up the food chain to birds, mammals, reptiles, and fish may present an additional 

exposure pathway, the effects of which are currently unknown. 
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7.5 Comparison to WWTP  

 

Removals of select trace organic contaminants during treatment in an OWTS were compared to 

WWTP removal efficiencies reported in the literature.  Included studies measured aqueous concentrations 

in the influent, after primary treatment, and after secondary treatment in the WWTP and in downstream 

surface water (caffeine: Thomas and Foster 2005; EDTA: Kari and Giger 1996, Barber et al. 2000; NPE: 

Ahel et al. 1987, Ahel at al. 1994, Barber et al. 2000).  Percent removals from the influent concentrations 

were calculated and compared to the percent removals in an OWTS including those achieved during 

septic tank treatment, soil treatment, and ground water recharge.   

In general, removal during onsite treatment is similar to removal during municipal treatment 

(Figure 18).  Septic tank treatment, though anaerobic, is similar to aerobic primary treatment in a 

centralized plant which utilizes physical separation and settling for removal (note that the high removal of 

NP1EC during septic tank treatment may be an anomaly of the Mines Park Test Site).  Treatment during 

the soil vadose zone is similar to secondary biological treatment in a centralized plant which enables 

volatilization, sorption, and aerobic biotransformation.  In some cases, greater removal may occur during 

soil treatment than during secondary treatment (e.g. biodegradation of EDTA in deep alkaline soils or 

greater NPE removal due to transformation of the aerobic degradation product NP1EC to NP and 

subsequent sorption during soil treatment).  Additional treatment generally occurs in both systems before 

and during recharge of the local receiving environment.  A WWTP may employ tertiary chemical 

treatment prior to effluent discharge and additional removal may occur in the deep vadose zone below an 

OWTS prior to reaching the ground water table.  Dilution will occur during recharge of the receiving 

environment (either ground water or surface water) and additional treatment may occur during transport, 

such as sorption to stream or aquifer sediments.  Compared to influent concentrations from both a WWTP 

and an OWTS, receiving environment concentrations were less than 5% of influent wastewater 

concentrations for caffeine, triclosan, and NPE, and for EDTA, concentrations were typically <15% of 

influent concentrations.   

While there is uncertainty associated with these calculations based on differing influent 

wastewater compositions and analytical methodologies, this exercise portrays the ability of an OWTS to 

remove trace organic contaminants from the influent wastewater as well or better than a municipal 

WWTP.  Exposure of aquatic organisms to trace organic contaminants in WWTP effluents may occur 

immediately since the effluent is most commonly discharged directly into the surface water where 

organisms live.  In contrast, most OWTS discharge to ground water, which may ultimately recharge 

surface waters, thus providing a barrier between the effluent and the primary exposed population.
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7.6 Risk Reduction through Effective Management 

 

In summary, results from this research suggest that a conventional OWTS including a septic 

tank(s) and soil treatment unit can provide good treatment (>90%) of many trace organic contaminants.  

Therefore, many currently operating systems may be removing trace organic contaminants even though 

they were not specifically designed for that purpose.  The results suggest that additional engineered 

treatment units such as a textile biofilter are not necessary when appropriate soil and site conditions are 

available, though engineered treatment units may be useful when limiting conditions exist (e.g., shallow 

ground water).  Removal of more recalcitrant compounds, such as NP, may require additional treatment 

units within an OWTS to reduce concentrations by 90% or more.  However, under many conditions, 

additional treatment will occur during ground water recharge and transport, further reducing potential 

effects on potentially exposed populations.  A more quantitative assessment of risk from trace organic 

contaminants in OWTS will evolve as more is learned regarding the acute and chronic effects and effect 

levels of trace organic contaminants in exposed populations.  

Risk reduction is a multi-tiered strategy to be considered not only by the wastewater treatment 

system engineer and manager, by also by the chemical manufacturer during consumer product production 

and by the homeowner/business owner during product selection and during water use activities.  Products 

may be manufactured using less persistent and/or toxic chemicals, such as the use of alcohol ethoxylates 

rather than alkylphenol ethoxylates in surfactants.  Consumers can select household chemicals with less 

toxic ingredients, and can also minimize chemical use at the source of wastewater generation.  If 

regulations are implemented, they may also reduce risk to receiving environments.  For example, a 

restriction on NPE discharges from an industrial source led to an upgrade of treatment technologies which 

resulted in decreases in NPE concentrations in the WWTP effluent and in the estrogenic effects on fish in 

the receiving environment within 1 year of implementation (Sheahan et al. 2002).   

The occurrence of trace organic contaminants in OWTS is a function of the wastewater source 

characteristics as well as the level of treatment performance achieved. While non-residential sources 

represent a small proportion of onsite systems, they can have specialized chemical and water uses that are 

reflected in the wastewater composition. Treatment efficiencies are controlled by the physicochemical 

properties of the compound and the removal mechanisms employed within an engineered or soil treatment 

unit. As an increasing proportion of the U.S. and global population rely on onsite treatment for long-term 

wastewater management, often in areas dependent on local ground water resources, understanding the 

occurrence and fate of trace organic contaminants in OWTS will aid in developing appropriate strategies 

and measures to minimize public health and environmental impacts. 
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CHAPTER 8 

CONCLUSIONS AND RECOMMENDATIONS 

 

Onsite wastewater treatment systems currently serve approximately one quarter of the U.S. 

population and a growing proportion of new development in the U.S. and worldwide.  These systems treat 

wastewater near the source through engineered and natural treatment units prior to recharge of the local 

receiving environment.  Often the receiving environment is the underlying ground water which may 

recharge surface water and/or supply water to the local population.  Therefore, effective removal of 

contaminants during onsite treatment can be critical to ecosystem and human health.  While much is 

known regarding the occurrence and fate of bulk wastewater parameters (e.g., BOD5, TSS, N) during 

onsite treatment, less is known regarding the occurrence and fate of trace organic contaminants, such as 

pharmaceuticals and consumer product chemicals.  These chemicals may disrupt the endocrine system of 

exposed populations, may stimulate the development of antibiotic resistance in the environment, or may 

otherwise adversely impact the environment. 

The research described in this report was conducted with the goal of improving the current 

understanding of the occurrence and fate of trace organic contaminants in OWTS.  The research involved 

a reconnaissance field survey of 30 currently operating OWTS in Colorado varying by source and 

treatment type and 18 receiving environments.  Controlled field-scale experimentation was conducted at 

the Mines Park Test Site to assess fate and variability of trace organic contaminants and surrogates during 

treatment within engineered unit operations and the soil.  Results were integrated into an OWTS design 

and management strategy specific to trace organic contaminants.  The specific objectives of the current 

research on trace organic contaminants were to: 1) quantify occurrence in OWTS varying by source, 2) 

assess removal efficiencies during treatment within engineered unit operations, 3) assess removal 

efficiencies during soil treatment, and 4) provide guidance for design and management of OWTS to 

minimize potential risk.   

 

8.1 Conclusions 

 

8.1.1 Objective 1: Occurrence 

 

• Trace organic contaminants including surfactant metabolites, metal-chelating agents, 

antimicrobials, stimulants, and deodorizers were present in septic tank wastewaters from OWTS 

serving a variety of residential and non-residential sources. 
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• Individual compounds were detected in 0 to 100% of wastewater samples in concentrations 

ranging from <0.5 μg/L to >1000 μg/L. 

• The levels and frequency of occurrence depended on the source, likely due to differences in 

chemical- and water-using activities.  In general, non-residential wastewaters had more trace organic 

contaminants at higher concentrations than residential wastewaters.   

• Individual compounds were detected less frequently (≤25%) and at lower concentrations (max = 

19 μg/L) in potential receiving environments.  (Note: selected sites were in OWTS-reliant regions but 

hydrologic connections to specific anthropogenic sources were not attempted or made as part of this 

research.) 

 

8.1.2 Objective 2: Engineered Treatment 

 

• Removal efficiencies of trace organic contaminants during onsite treatment in engineered unit 

operations (i.e. septic tank, biofilter, or constructed wetland) ranged from <1% to >99%.   

• In general, removal efficiencies during septic tank treatment were low (<35%), attributed to 

hydrophobic sorption to solids with subsequent settling.  Therefore, in a conventional onsite system, 

trace organic contaminants in septic tank effluent could be loaded to the soil at concentrations similar 

to influent septic tank wastewater concentrations. 

• Additional aerobic biofilter-based treatment beyond the traditional anaerobic tank-based 

treatment enhanced removal for many trace organic contaminants, likely due to volatilization and 

aerobic biotransformation. 

• Compounds that are not hydrophobic, volatile, or biodegradable persisted through onsite 

engineered unit operations. 

• Concentrations of transformation products often increased as parent compounds degraded.   

 

8.1.3 Objective 3: Soil Treatment 

 

• Greater than or equal to 90% removals (or to <RL) of trace organic contaminants from septic tank 

effluent were achieved: 

o during effluent infiltration and percolation through 60 cm of sandy loam soil, with the 

exception of EDTA and NP (which both had negligible removals), and 

o during 240 cm of sandy loam soil with the exception of NP (<50% removal). 
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• Soil solution concentrations at the same depth in the soil profile receiving STE or TFE were 

similar; therefore soil solution concentrations of trace organic contaminants 60 cm BIS and deeper 

were not affected by effluent type (e.g. STE vs. TFE). 

• Soil solution concentrations at the same depth from test cells receiving a design hydraulic loading 

rate of 2 vs. 8 cm/d were similar; therefore soil solution concentrations of trace organic contaminants 

60 cm BIS and deeper were not affected by design hydraulic loading rate (e.g. 2 vs. 8 cm/d) with the 

exception of EDTA.  A higher HLR resulted in higher soil solution EDTA concentrations at the same 

depth as compared to a system with a lower HLR.     

• With a few exceptions, total mass removals of trace organic contaminants during three years of 

soil treatment were greater in test cells receiving STE than in those receiving TFE and also greater in 

test cells receiving a high HLR than in those receiving a typical HLR of the same effluent. 

 

8.1.4 Objective 4: Design and Management Considerations 

 

• Knowledge of the distribution of water- and chemical-using activities contributing to the 

wastewater can provide initial information regarding the types and levels of trace organic 

contaminants that will be present in OWTS wastewater. 

• A conventional OWTS (e.g. utilizing septic tank and sandy loam soil treatment) can provide good 

treatment (>90%) of many trace organic contaminants, even though it was not specifically designed 

to do so.  Therefore, the addition of an engineered treatment unit, such as a textile biofilter, is not pro 

forma necessary for high removal of trace organic contaminants. 

• Removal of trace organic contaminants during onsite treatment may be optimized by a number of 

design features, such as: 1) increasing the hydraulic and sludge retention time within a septic tank(s), 

2) minimizing solids discharge from the tank, 3) applying effluent to the soil at an appropriate HLR 

(~2 to 4 cm/d) to maintain its infiltrative capacity, and 4) selection of an appropriate soil profile (e.g. 

sandy loam) with adequate vadose zone depth (e.g., >60 cm) and an appreciable organic carbon 

content and moderate permeability with sufficient structure for air and water movement. 

• While high removal can be achieved during onsite treatment, low levels of some trace organic 

contaminants can reach ground water that is less than 240 cm below the soil infiltrative surface. 

• Under typical conditions, trace organic contaminant concentrations in OWTS effluent will be 

further reduced during ground water recharge and transport prior to potential exposure through a 

supply well or surface water, thereby reducing the risk to ecosystem and human health.  Risk 

assessment regarding trace organic contaminants on OWTS will evolve as effects and effect levels of 

individual compounds and mixtures of compounds are better understood.   
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8.2 Recommendations for Future Research 

 

• Additional source characterization is needed in systems serving non-residential sources that were 

not included in the current study, such as human medical facilities like dental offices, doctor offices, 

and elderly care facilities that may have unique water- and chemical-using activities as compared to 

residential sources. 

• Large variations in trace organic contaminant concentrations were found not only between 

different systems but also within a single system during different sampling events.  This is likely due 

to changing water- and chemical-using activities at the source at different times of the year, as well as 

differences in system characteristics that may affect treatment.  Frequent sampling of a single source 

over an extended period of time (e.g. one year or more) while monitoring chemical- and water-use at 

the source would provide additional insight into the expected variability of trace organic contaminants 

within a single site and the relevant factors affecting this variability. 

• Other trace organic contaminants with known or potential adverse effects should be quantified in 

OWTS wastewaters.  For example, some natural and synthetic hormones, such as 17β- estradiol, 

estriol, and 17α-ethynylestradiol, though typically present in wastewaters at concentrations orders of 

magnitude lower than the range measured in this study, have endocrine disrupting potencies orders of 

magnitude higher than surfactant metabolites.  Quantification of these low-concentration compounds 

requires additional method development (clean-up step after extraction, derivatization, and often more 

advanced instrumentation, e.g. GC/MS/MS). 

• A textile biofilter can reduce the concentrations of many trace organic contaminants as compared 

to septic tank effluent concentrations.  A number of other engineered unit operations are available, 

such as single- and multi-pass sand filters, bioreactors, and constructed wetlands, which are designed 

for bulk parameter removal but may have the added benefit of trace organic contaminant removal.  

Additional research could compare removal efficiencies of trace organic contaminants in various 

types of engineered treatment units. 

• Controlled laboratory-scale experiments are needed to identify the relevant contributions of 

specific removal mechanisms during treatment within an engineered unit operation.  For example, 

batch sorption experiments of trace organic contaminants to septic tank solids could identify the 

relevance of sorption vs. anaerobic biotransformation during tank-based treatment.  Controlled 

laboratory-scale experiments could also determine the primary factors effecting treatment within 

engineered unit operations.  For example, biodegradation rates may vary depending on many 

conditions, such as effluent concentration, seasonal temperature changes, and redox conditions. 
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• Controlled laboratory-scale experiments will aid in identifying the relevant contributions of 

specific removal mechanisms within soil treatment.  For example, batch sorption experiments of trace 

organic contaminants to soil from increasing depths below the infiltrative surface could identify the 

changes in relevance of sorption vs. biotransformation during soil infiltration treatment. 

• The long hydraulic residence time within the sandy loam soil at the Mines Park Test Site resulted 

in effective treatment of many trace organic contaminants.  However, persistence of these trace 

organic contaminants through other soil systems has been reported.  Column experiments comparing 

removal of organic contaminants from the same effluent through different types of soil (e.g. varying 

by hydraulic conductivity, organic carbon content, clay content, etc.) is needed to quantify effects on 

trace organic contaminant removal due to soil properties. 

• A comparison of alternative soil treatment units to conventional soil infiltration could identify 

more appropriate methods for the removal of trace organic contaminants.  For example, drip-dispersal 

networks are installed within the shallow rhizosphere where there may be enhanced microbial activity 

and higher organic carbon contents as compared to deeper soils.  

• Sampling of OWTS effluent and receiving environments with a hydrologic connection is needed 

to better assess transport and treatment of trace organic contaminants to and within ground water prior 

to surface water recharge. 

• Modeling the fate of trace organic contaminants during onsite treatment and recharge of the 

receiving environment (with tools such as Hydrus -1D) could aid in extending the Mines Park-

specific results to additional locations and conditions.    
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