Water Research Teams

Photo courtesy of Patrick Byrne, Soil and Crop Sciences, CSU, 2014 Water Research Team project: Drought Stress Adaptation in Winter Wheat through Soil Microbial Interactions and Root Architecture

Each year CoWC funds a select number of Water Research Teams through our CSU Competitive Grant Program to catalyze innovative research through interdisciplinary collaboration and creative scholarship among faculty, researchers, and students. These awards provide a unique opportunity to accelerate progress in research and enable the academic and experiential realm of water resources at CSU. Since 2013, we have funded 35 water research team projects.

Current Research Teams 2020- 2021

PI: Sara Rathburn  | Professor, Department of Geosciences

Building a long-term watershed research site at CSU Mountain Campus

Kira Puntenney-Desmond, Stephanie Kampf, Steven Fassnacht, Matthew Ross, Ecosystem Science and Sustainability
Michael Ronayne, Daniel McGrath, Geosciences
Ryan Morrison, Civil and Environmental Engineering
Kristen Rasmussen, Atmospheric Science
Seth Webb, CSU Mountain Campus
Jared Heath, City of Fort Collins

Sara Rathburn is leading a large team of faculty, students, and partners to build a long-term watershed research site at CSU Mountain Campus. Dr. Rathburn and researchers want to study the headwaters of the South Fork of the Cache la Poudre River and make that information available for wider use. Through this project, the team will coordinate data collection, storage, and analysis as well as develop teaching content for CSU and the Poudre School District.

PI: Michael Wilkins  |  Associate Professor, Department of Soil and Crop Sciences

Beaver-generated wetlands as ecosystem control points for post-fire transport of sediment, carbon, nutrients, and toxic metals into Rocky Mountain headwaters

Thomas Borch, Soil and Crop Sciences
Charles Rhoades, United States Forest Service

Mike Wilkins is partnering with faculty and the U.S. Forest Service to conduct field and laboratory research to better understand water quality changes in post-fire landscapes. Specifically, the team will investigate ecosystem impacts of burned landscapes in beaver-generated wetlands in Colorado and Wyoming.

Recent Research Teams 2019- 2020

PI: Aditi Bhaskar  |  Assistant Professor, Department of Civil and Environmental Engineering

Harnessing the power of the crowd to monitor urban street flooding

Greg Newman, Natural Resource Ecology Laboratory
Stephanie Kampf, Department of Ecosystem Science and Sustainability
Sam Zipper, University of Victoria, Kansas Geological Survey

This research team will use community monitoring of urban street flooding in order to generate greater temporal and spatial coverage of flood-related data than would be possible with installed sensors. This data will allow for analyses of the factors that lead to street flooding. This pilot project will also provide a foundation for integrating social media with Flood Tracker.

PI: John Hribljan  |  Research Scientist II, Department of Forest and Rangeland Stewardship

Hydrologic drivers of peatland development and carbon accumulation in western Washington

Jeremy Shaw, David Cooper, Department of Forest and Rangeland Stewardship
Jason Sibold, Department of Anthropology
Joe Rocchio, Washington Department of Natural Resources, Natural Heritage Program
Julie Loisel, Texas A&M University, Department of Geography

This research team will investigate how peatlands respond to changes in precipitation and temperature over time. Despite peatlands’ significant role in global carbon storage, uncertainties remain in how these systems respond to hydrologic alterations from changing climate and land use. This research will inform regional wetland management and has far reaching implications for more northern peatlands.

PI: Kristen Rasmussen  |  Assistant Professor, Department of Atmospheric Science

The current and future state of water resources for the Colorado Rocky Mountains

Steven Fassnacht, Department of Ecosystem Science and Sustainability
Daniel McGrath, Department of Geosciences
Graham Sexstone, U.S. Geological Survey, Colorado Water Science Center

This research team will use high-resolution modeling to investigate how predicted changes in climate will modify the snowpack and hydrology of the Colorado Rocky Mountains. This work will produce a better understanding of future snow dynamics given its complex interactions with the atmosphere, land cover, and terrain, and will inform management of the ecological resources of Rocky Mountain National Park and surrounding areas.

Past Research Teams 2018- 2019

PI: Paul Evangelista  |  Research Ecologist, Natural Resource Ecology Laboratory and Assistant Professor, Department of Ecosystem Science and Sustainability

Measuring impacts of forest disturbance on streamflow

Tony Cheng, Forest and Rangeland Stewardship and Colorado Forest Restoration Institute

Wildfires and bark beetle outbreaks alter the structure of forests, changing snow and vegetation patterns over large mountain landscapes and potentially influencing the timing and magnitude of streamflow in affected watersheds. Dr. Evangelista’s team of forest ecologists and hydrologists set out to quantify the impact of forest changes on streamflow across Colorado. Previous work has found mixed conclusions regarding the impacts of forest disturbance on streamflow. The effects can differ based on topography, climate, severity of the impact, precipitation in a given year, and whether the precipitation falls as snow or rain (Creeden et al, 2014; Biederman et al, 2015). To try to quantify these effects, we generated forest disturbance maps delineating severity and timing of bark beetle outbreaks (2001-2013), and summarized wildfire data (Monitoring Trends in Burn Severity, 1984-2015). For watersheds that have stream gages with complete annual records for the years of disturbance data (US Geologic Survey, Colorado Division of Water Resources), we analyzed the relationship between streamflow anomalies and disturbance type and severity, while controlling for climatic influences on streamflow.

PI: Jay Ham  |  Professor, Department of Soil and Crop Sciences

Next generation soil moisture measurement technology for research, water management, and environmental monitoring

Allan Andales, Maria Capurro, Department of Soil and Crop Sciences
Russ Schumacher, Peter Goble, Department of Atmospheric Science and Colorado Climate Center
Tom Sale, Department of Civil and Environmental Engineering

The goal of this project is to develop low-cost, Internet-of-things (IoT), soil moisture measurement systems (sensors and data logging) that can provide real-time water content data for a broad range of research and applied applications. The PIs will leverage new developments in electronics, 3D-Printing, underground sensor networks, and internet-of-things connectivity to meet this goal at a very low price point. Prototypes will be tested in the laboratory and in the field at weather stations, greenhouses, and remediation sites. Results will be open-sourced so they can be duplicated and improved upon by others working in this space.

Kathleen Galvin, Department of Anthropology and The Africa Center
Randall Boone, Deptartment of Ecosystem Science and Sustainability

During 2018-2019, the Water Research Team (WRT) for “Who changes the rain?” developed new research directions, aimed to secure external funding, and hosted a symposium on Water in Africa. A key goal was to develop a new, interdisciplinary CSU-based team of scientists who would explore the coupled dynamics of how changes to landscapes (e.g. deforestation) can modify the atmospheric water cycle, and subsequently impact subsistence communities downwind. The primary research question of this WRT was: What are the potential consequences that could result by achieving certain Sustainable Development Goals (SDGs) in Kenya? In this case, we were focused on SDG #15, regarding sustainability of “Life on Land” — and more specificially, whether changes to forest cover in Kenya might lead to unexpected changes in the atmospheric water cycle, including how much rain falls on both agricultural and rangelands, elsewhere in Kenya.

PI: Stephanie Malin  |  Associate Professor, Department of Sociology

Food-Energy-Water Systems (FEWS) justice: urban and rural corridors in the Rio Grande-Bravo Basin (RGB)

Melinda Laituri, Faith Sternlieb, Department of Ecosystem Science and Sustainability
Constance DeVereaux, LEAP Institute for the Arts
Steve Mumme, Department of Political Science
Josh Sbicca, Department of Sociology
Sybil Sharvelle, Department of Civil and Environmental Engineering

The Rio Grande/Rio Bravo (Rio Grande-Bravo or RGB) River Basin flows 1,896 miles from its headwaters in the San Juan Mountains of Southern Colorado. The populations and socio-economic fabrics of communities along the Rio Grande-Bravo River Basin are equally diverse, given that the basin includes multiple U.S. and Mexican states, and 18 Tribal Pueblos of New Mexico and four additional Tribal nations. Water industries in the Basin include agriculture (water use estimated at 75% of available supplies), oil and gas, tourism and recreation, and commercial fishing. These pressures set the context for an examination of competing demands for water through an environmental justice lens.

After conducting our initial research and fieldwork, Dr. Malin and the team held the New Mexico Tribal Environmental Justice Roundtable, which was attended by about 30 Pueblo/ Tribal Environmental Professionals, who represented 10 of the 19 different Pueblos across New Mexico. People’s health is affected in most of these cases of environmental injustice, and that this is a deeply held concern in the communities. Youth and women from Tribal communities play important roles in addressing environmental and climate injustice, and need to gain more influence. People’s concerns over water quality and water scarcity intersect with almost every other experience of environmental injustice that was mentioned.

PI: Ryan Morrison  |  Assistant Professor, Department of Civil & Environmental Engineering

Development of a novel framework for estimating moisture susceptibility attributable to natural flood hazards in the U.S.

Ellison Carter, Department of Civil and Environmental Engineering
Kristen Rasmussen, Department of Atmospheric Science
Brooke Anderson, Department of Environmental and Radiological Health Sciences

Flooding events in the U.S. cause large economic and health burdens each year and are the nation’s second-deadliest weather-related natural disasters, with national economic losses conservatively estimated to be at least $50 billion annually. Strong climatological, meteorological, and changing land-use evidence indicates that the frequency and severity of flooding are intensifying in many regions and will continue to increase in the future. This research seeks to alleviate such negative impacts through understanding of geographic flooding trends.

The frequency and spatial distribution of flood types varied in each basin. When housing stock attributes were spatially analyzed within flood boundaries for 20-, 50-, and 100-year events, we unsurprisingly found that more homes may be impacted by flooding during the 100-year event compared to smaller events. In addition, the spatial distribution of housing types impacted by different sized floods varied in each basin. These findings highlight the need to examine more fundamental hydrometeorological processes of flooding across large spatial scales and to explore the disparate impacts of flooding on different demographic groups.

Learn more about the impactful research our grantees have accomplished in these issues of Colorado Water.

Colorado Water December 2020
2019-2020 Research Projects
2018 Research Projects
2017 Research Projects
2016 Research Projects

Research Teams Archive

PI: Tony Cheng  |  Professor, Department of Forest and Rangeland Stewardship

A Systems Modeling Approach to Quantify Forest Fuel Treatment Effects on Wildlife Severity and Post-Fire Erosion

Benjamin Gannon, Brett Wolk, Colorado Forest Restoration Institute
Kelly Jones, Human Dimensions of Natural Resources
Stephanie Kampf, Lee MacDonald, Ecosystem Science and Sustainability
Katherine Mattor, Yu Wei, Forest and Rangeland Stewardship
Peter Nelson, Civil and Environmental Engineering

Water providers and watershed coalitions are increasingly interested in proactively managing forest fuels in order to reduce the severity of future wildfires and, in turn, reduce the negative post-wildfire impacts to water resources. In hopes of enhancing their accuracy, this research identified the limits of models currently used to predict post-fire impacts. Such models cannot precisely predict sediment yields and erosion at very fine scales. Their performance also worsens when using remote sensing and GIS to characterize bare soil and terrain—knowledge of which factors would greatly improve erosion model prediction accuracy. To address these shortcomings, the team is finalizing an integrated fire, erosion, and sediment transport model for characterizing wildfire risk to water supplies. Already this work has supported fuel treatment decisions in a large watershed (Peaks to People Water Fund, working on the Cache la Poudre) and has been used to assess the effectiveness of post-fire watershed rehabilitation treatments for an ongoing project with the City of Boulder.

PI: Will Clements  |  Professor, Department of Fish, Wildlife, and Conservation Biology

Developing a Comprehensive Understanding of Metal Impacts on Stream Ecosystems in Colorado

Edward Hall, Natural Resource Ecology Laboratory
Katy Warner, NRM Field Institute, Colorado Mountain College

This research explored what factors influence the success of restoration efforts in metal-contaminated streams in the Upper Arkansas River Basin in southern Colorado. Dr. Clements and the team analyzed water and tissue samples of macroinvertebrate communities, confirming a continued decline in trace metals—the result of ongoing restoration in the area. While the status of many species has improved, the team found downstream communities to be significantly different compared to those upstream; the former have shifted to an alternative state of stability. Downstream macroinvertebrate communities had developed—and retained—a substantially higher metal tolerance than their upstream counterparts, despite significant improvements in water quality. This tolerance may have come at a price for these animals: they are much more sensitive to other stressors such as diesel fuel. We do not yet know if they will ever fully recover. This long-term assessment of water quality and macroinvertebrates represents the most comprehensive and continuous record of physical, chemical, and biological data available for a stream ecosystem in North America, and can be used to assess restoration effectiveness and inform treatment guidelines for water managers.

PI: Susan De Long  |  Associate Professor, Department of Civil and Environmental Engineering

Biotreatment of Pharmaceuticals and Personal Care Products during Water Treatment for Reuse: Ensuring Human Safety at the Food-Water Nexus

Karen Rossmassler, Department of Civil and Environmental Engineering
Jessica Prenni, Proteomics and Metabolomics Core Facility
Corey Broeckling, Proteomics and Metabolomics Core Facility and Department of Horticulture and Landscape Architecture

Pharmaceuticals and personal care products (PPCPs) are routinely detected in treated wastewater, surface water, and even sometimes potable water supplies—representing a potential risk to human health if consumed in drinking water or irrigated food supplies. While some physical and chemical treatment technologies exist (advanced oxidation or reverse osmosis, for example), they are expensive and energy-intensive, and can produce problematic waste streams. Biological PPCP removal, on the other hand, can use microorganisms to degrade contaminants and can be designed to have a minimal carbon footprint and no problematic waste streams. However, commercially viable options for bio-treatments are not yet available. This research explored which microorganisms are best at transforming or removing a range of PPCP chemicals commonly found in water, and identified the specific biotransformation mechanisms (i.e., genes and enzymes) involved in such processes of biodegradation. Efforts like these are critical to advancing biological PPCP treatment technologies and ultimately bringing them into widespread practice.

PI: Michael Falkowski  |  Associate Professor, Department of Ecosystem Science and Sustainability

Quantifying the Scope and Impact of Permanent Agricultural Dry-Up Due to Rural to Urban Water Transfers

Dale Manning, Department of Agricultural and Resource Economics
Drew Bennett, Department of Fish, Wildlife, and Conservation Biology
Sarah Parmar, Colorado Open Lands
Steven Filippelli, Natural Resources Ecology Laboratory

In order to meet growing water demands in urban areas across the American West, water rights are increasingly being transferred from agriculture to municipal uses—a process which typically results in the permanent dry-up of previously irrigated agricultural land. The team piloted an approach using remote sensing data and an automated data processing method to identify farms that have experienced agricultural dry-up, and found that nearly 100,000 acres of irrigated farmland in the South Platte Basin had dried up between 1984 and 2016. During the same period, water rights historically used to irrigate more than 86,000 acres of farmland in the Basin were transferred from agricultural to municipal uses. As urban water demands rose (and were met via these transfers), regional economic activity increased by $250 million. Clearly, dry-up has significantly influenced the landscape in the South Platte Basin, but the economic impacts of these changes are small relative to the size of the regional economy. These findings imply dry-up will continue to occur in the western portion of the Basin, but agriculture is likely to persist in the lower portion. The research also supports policies that can facilitate the conversion of dried land to valuable uses (such as recreation) to broaden the benefits to the growing population in the Basin.

PI: Jens Blotevogel  |  Senior Research Scientist, Department of Civil and Environmental Engineering

New Frontiers in the Nexus of Food, Energy, and Water Systems: Exploring Food Crop Uptake of Contaminants from Oil & Gas Wastewater

Thomas Borch, Allan Andales, Steven Fonte, Department of Soil & Crop Sciences
Tara O’Connor Shelley, Tara Opsal, Department of Sociology
Seth Shonkoff, PSE Healthy Energy, Oakland, CA
Benny Chefetz, The Hebrew University of Jerusalem

Investigations by Dr. Blotevogel and colleagues show that chemicals related to oil/gas activities, such as petroleum hydrocarbons and naturally occurring radioactive materials, are present in a Wyoming watershed study site. While the environmental and health impacts of releases of such water are largely unknown, this study will help inform regulators and industry to safely manage produced water discharges for beneficial use.

PI: Steven Fonte  |  Associate Professor, Department of Soil and Crop Sciences

Evaluating alternative water and nutrient management strategies as climate-smart agricultural options for Colorado and beyond

Louise Comas, Catherine Stewart, USDA Agricultural Research Service
Dale Manning, Department of Agricultural Resource Economics
Jose Chavez, Department of Civil and Environmental Engineering
Meagan Schipanski, Troy Bauder, Eric Wardle, Department Soil and Crop Sciences

Agricultural impacts on climate variables and environmental health were explored by Dr. Fonte’s team. Climate-smart agricultural management is critical for the future of food production and mitigating climate change. The team found that deficit irrigation may be a promising management strategy for improving crop water use efficiency, mitigating greenhouse gases, and strengthening rural livelihoods.

PI: Michael Ronayne  |  Associate Professor, Department of Geosciences

Evaluating the Energy Cost of Groundwater Production in the Denver Basin Sandstone Aquifers

Tom Sale, Department of Civil and Environmental Engineering
Jordan Suter, Department of Agricultural and Resource Economics

Dr. Ronayne and team researchers investigated energy requirements for municipal groundwater pumping in the Denver Basin Aquifer System, an important water resource in Colorado feeding more than 800 active municipal wells. Decades of pumping has resulted in falling water levels and a coinciding increase in the amount of energy required to produce water. In response, the team quantified energy intensity and total estimated energy use across the region, and identified management strategies to reduce lifts and, in turn, decrease the amount of energy required for groundwater pumping.

Brian Bledsoe, Department of Civil and Environmental Engineering

As whitewater parks with modified water structures gain in popularity with kayakers, modified flow patterns may be detrimental to the ability of fish to migrate up and down a river. Hydraulic modeling may be used to analyze such flows. This team showed how smoothed-particle hydrodynamics (SPH) may be a powerful new technique to simulate flows through whitewater parks. They developed a methodology that can be used to determine the impacts of future whitewater park structures on fish passage and found that current structures in Lyons, CO allow larger fish to migrate through the channel but act as a barrier to smaller fish.

PI: Elizabeth Ryan  |  Associate Professor, Department of Environmental and Radiological Health Sciences

One Health Surveillance of Antimicrobial-Resistant Bacteria in Fort Collins, CO

Richard Bowen, Department of Biomedical Sciences
Susan De Long, Department of Civil and Environmental Engineering
Charles Henry, Department of Chemistry

Antimicrobial resistant bacteria (ARB) is an emerging water, sanitation, and hygiene issue, worsened by a lack of reliable, well-documented, and validated human health risk assessments. This project addressed the increasing awareness of water’s role in ARB spread and persistence. Through a collaboration with local government, the team developed an effective surveillance method for determining the relative abundance of antimicrobial resistant (AMR) microbes, and their findings from northern Colorado merit extension to additional locations to better understand the relationships to infections occurring in medical and health care settings.

PI: Brooke Anderson  |  Assistant Professor, Department of Environmental & Radiological Health Sciences

Open-Source Software to Aggregate Weather Data for Health Studies

Brian Bledsoe, Neil Grigg, Department of Civil and Environmental Engineering
Sheryl Magzamen, Department of Environmental and Radiological Health Sciences

Environmental epidemiology provides the opportunity to understand the juxtaposition between ambient exposures such as severe weather, air pollution, and human health risks. Open-source tools were developed to allow researchers to better comprehend epidemiological research with an emphasis on water-related weather exposures such as tropical storms and flood events.

PI: Thomas Borch  |  Professor, Department of Soil and Crop Sciences

Impact of Shale-Gas Development on Surface Water and Lake Sediment Contamination

Jens Blotevogel, Molly McLaughlin, Department of Civil and Environmental Engineering, Colorado State University
William Hanneman, Department of Environmental & Radiological Health Sciences
Yury Desyaterik, Department of Atmospheric Science
William Burgos, Nathaniel Warner, Department of  Civil and Environmental Engineering, Pennsylvania State University
Patrick Drohan, Ecosystem Science and Management, Pennsylvania State University

Throughout portions of the United States, water systems are at risk as result of natural gas extraction from shale. This research study focused on determining the impacts of unconventional oil and gas operations have on the Conemaugh River Lake, located in western Pennsylvania.

PI: Stacy Lynn  |  Research Scientist II, Natural Resource Ecology Laboratory

Water is Blood, Water is Life—Water Governance and Use in Turkana, Kenya

Michele Betsill, Department of Political Science
Melinda Laituri, Department of Environmental Science and Sustainability

The discovery of two aquifers in Turkana County, Kenya is estimated to satisfy the public’s need of access to water for 70 years. This research project focused on providing a multi-disciplinary analysis assessing historic water use, the spatial and temporal distribution of water sources, as well as water governance throughout Kenya.

PI: Sara Rathburn  |  Associate Professor, Department of Geosciences

Flow, Sediment Transport, and Nutrient Flux Monitoring using Seismic and Infrasound Signals

Rick Aster, Department of Geosciences
Brian Bledsoe, Engineering, University of Georgia
Tim Covino, Ecosystem Science and Sustainability

Very few individuals are cognizant that subtle ground vibrations stem from standard Earth surface processes including water discharge and sediment movement, all of which can be measured using seismometers. By deploying seismometers and infrasound sensors on two rivers in Colorado, researchers were able to assess the applicability of quantifying flow and sediment transport through ground vibrations.

PI: Tom Sale  |  Professor, Department of Civil and Environmental Engineering

CSU Subsurface Water Storage Initiative

Ryan Bailey, Department of Civil and Environmental Engineering
Michael Ronayne, Bill Sanford, Department of Geosciences

A subsurface water storage (SWS) initiative was created to develop partnerships with Colorado water managers. Emphasis was also placed on collaborating with cities within the Front Range of Colorado to determine the current efforts and performance of aquifer storage and recovery (ASR) wells.

Martin Carcasson, Department of Communication Studies
Neil Grigg, Department of Civil and Environmental Engineering

The Northern Integrated Supply Project (NISP) is being considered for permitting by the U.S. Army Corps of Engineers (USACE), which is controversial to some individuals. Understanding that disagreement related to NISP cannot be resolved in a public hearing, researchers focused on understanding various beliefs and values through an experimental dialogue.

PI: Tim Covino  |  Assistant Professor, Department of Ecosystem Science and Sustainability

Loss of Catchment Retention: Interactions between Catchment Morphology, Residence Time, and Geochemical Processing Amidst a Changing Hydrologic Regime

PI: Jessica Davis  |  Department Head and Professor, Department of Horticulture and Landscape Architecture

The Water-Nitrogen Trade-off: Optimizing the Use of Water to Fix N and Reduce Agriculture’s C Footprint

PI: Jay Ham, Professor, Department of Soil and Crop Sciences

New Technology for Measuring Sap Flow and Transpiration in Agricultural and Native Ecosystems

PI: Yan Vivian Li  |  Assistant Professor, Department of Design and Merchandising

PI: William Sanford  |  Associate Professor, Department of Geosciences

How carbongenic nanoparticles (CNPs) Move Through Various Types of Porous Media Under Conditions that Replicate the Natural Environment

PI: Dana Winkelman  |  Unit Leader, USGS Colorado Cooperative Fish and Wildlife Research Unit, Department of Fish, Wildlife, and Conservation Biology

PI: David Walters  |  Supervisory Research Ecologist, USGS

Rocky Mountain Streams Past and Present: The Influence of Forest Stand Age and Wood Deposition on Trout and Insect Biomass

PI: Patrick Byrne  |  Professor, Department of Soil and Crops Sciences

Drought Stress Adaptation in Winter Wheat through Soil Microbial Interactios and Root Architecture

PI: Mike Gooseff  |  Associate Professor, Department of Civil & Environmental Engineering

Exploring the Water – Energy Nexus at CSU: Hydrologic Fate and Transport of Chemicals Used in Oil & Gas Development

PI: Ed Hall  |  Assistant Professor, Department of Ecosystem Science and Sustainability

Developing Scholarly Excellence Across the Aquatic-terrestrial Interface: Understanding the Hydro-bio-geo-chemistry of Extreme Events

PI: Sheryl Magzamen  |  Assistant Professor, Department of Environmental and Radiological Health Sciences

Characterizing Biological Pollutants in Agricultural Runoff at Colorado Dairies

PI: Sybil Sharvelle  |  Associate Professor, Department of Civil and Environmental Engineering

Evaluation of Urban Nutrient Loading and Recommendations for Cost Effective Treatment Technologies