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Abstract
Determining water stress levels of vegetated surfaces is crucial for irrigation scheduling. This paper aims to evaluate a new 
method for obtaining crop water stress index (CWSI) based on the estimation of sensible heat flux using an aerodynamic 
temperature gradient approach. Data were collected on a deficit irrigated maize field at a research farm located in Greeley, 
Colorado, USA, in 2017 and 2018. The irrigation treatment used subsurface drip. Weather data were measured on-site at 
3.3 m above ground level. RED and NIR surface reflectance data were obtained on-site through multispectral radiometer 
measurements. Nadir surface temperature data were measured using infra-red thermometers at 1 m above canopy. CWSI 
estimated values were used to assess daily soil water stress index (SWSI), calculated from measurements of volumetric soil 
water content (VWC) and management allowed depletion (MAD) of 40%. Results show that SWSI is best represented through 
a non-linear rational CWSI function. Modeled CWSI estimates were compared to measured surface heat fluxes, resulting 
in a mean bias error of − 0.02 and a root mean square error of 0.09, while errors were 0.02 and 0.06 when compared with 
observed CWSI based on canopy transpiration measured with plant sap flow devices. Results seem to validate the proposed 
sensible heat flux-based CWSI model. The CWSI approach presented could be used to manage irrigation and conserve water 
resources for maize in semi-arid regions.

Introduction

Irrigation scheduling and agricultural water management 
practices have shifted toward optimizing crop yield and con-
serving water and soil resources due to climate change and 
population growth. Maize is an essential commodity across 
the United States of America (USA). The susceptibility of 
yield loss due to the climate change conditions is evident 
across the USA. These conditions affect most productive 

crops, including maize. According to Chung et al. (2014), 
maize yield in the USA could suffer a reduction of 29% 
due to changes in climate that are caused by accentuating 
extreme conditions (i.e., droughts) by 2050. Within the 
countryside, the areas that are more susceptible to suffer 
intense drought seasons due to future reduced rainfall and 
snowmelt events are the locations within the Midwest of 
the USA, which include, but not limited to, Kansas, Iowa, 
Nebraska, and Oklahoma (Tubiello et al. 2002). Most of 
the maize production in the country is concentrated in this 
geographic region, according to USDA National Agricul-
tural Statistical Service (USDA—NASS) 2017 report. The 
need to increase agricultural water management practices 
for maize to preserve water and minimize the effects of 
drought seasons relies on the development of more efficient 
methods to assess stress levels that might integrate surface 
heterogeneity due to soil properties’ differences and canopy 
resilience to water stress conditions.

Crop water stress level assessment has been used as a 
decision-making tool for triggering irrigation water appli-
cations during the vegetative growth stage of crops. Early 
studies suggested that the temperature gradient between the 
canopy and air temperatures was correlated to the degree 
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of stress that the plants suffer when the soil water content 
within the root zone is continually depleted over time (Idso 
et al. 1977; Ehrler et al. 1978; Jackson et al. 1981).

Induced canopy water stress due to weather conditions or 
irrigation management practices might be assessed through 
the calculation and analysis of water-stressed indices. In the 
literature, several indices could be related to canopy water 
stress levels such as aeration (ASI), drought (DSI), harvest 
(HSI), crop water (CWSI), and soil water (SWSI) stress indi-
ces (Wang et al. 2015; Jackson et al. 1988; Chávez 2015). 
Calculations of aeration and drought stress indices depend 
on soil matrix properties and water content characteristics. 
The harvest stress index is a function of the rates of evapo-
transpiration from water and non-water stress conditions, 
as well as a given minimum harvest index that should vary 
among different crop types (Wang et al. 2015). The SWSI 
is an index that also relies on soil water properties. Still, it 
adds a component associated with irrigation water manage-
ment practices for a given vegetation type into the estima-
tion of the water stress index. The additional term is based 
on a soil water content threshold for triggering irrigation 
(Chávez 2015), which makes the water stress level’s predic-
tion closer to the field conditions than previous soil water-
based stress indices listed. The crop water stress index relies 
on the estimation of canopy stress levels that are based on 
the interaction of a given surface and surrounding atmos-
phere conditions, such as the canopy and air temperatures 
and surface heat fluxes.

The ASI, DSI, HSI, and SWSI determination depends on 
point source (small area/volume) measurements throughout 
the root zone. For a point-basis analysis, the accuracy of 
the stress index methods based on soil water measurements 
is an advantage to be considered. However, the assessment 
of spatial water stress for large plots with heterogeneous 
soil–plant properties is not reliable due to the need for data 
collection at several different locations across an agricultural 
field. Logistics and financial issues could be a byproduct 
of the need for more data and limit soil water-based stress 
indices’ application for agricultural water management.

The CWSI method has been widely implemented to 
monitor and improve irrigation water management spatially 
because of the easiness of acquiring the data needed across 
an entire field. Some studies in the literature indicate dif-
ferent researches that describe methods to calculate CWSI 
based on remotely sensed data acquisition for temperature 
and biomass (O’Shaughnessy et al. 2011; Wang et al. 2016; 
Sagayo et al. 2017; Jiang et al. 2018). The CWSI method is 
reliable to characterize better canopy water stress conditions 
in different agricultural fields that demand different deci-
sion-making processes based on the canopy water demand 
at different locations within the area. Limiting factors such 
as availability, both on quantitative and qualitative terms, 
of images and technical expertise to use algorithms might 

impose challenges on the dissemination of CWSI remotely 
sensed algorithms. However, advancements in research and 
imagery resolution through unmanned aircraft tend to over-
come the limitations of implementing CWSI algorithms.

The amount of water that is depleted from the surface 
through plant transpiration and soil water evaporation is a 
function of environmental variables such as net radiation 
(Rn), vapor pressure deficit (VPD), wind speed (u), and water 
availability in the soil profile (Idso et al. 1981). Existing 
methods for determining crop water stress index relied on 
measurements of canopy temperature using infrared ther-
mometers (IRT). IRT is an instrument capable of providing 
on-site temperature data based on the thermal emission of 
radiation by the surface. The early CWSI calculation was 
based on Eq. (1), Jackson et al. (1988):

where  CWSIo represents the crop water stress index initial 
developed approach (dimensionless); Tc refers to the canopy 
or leaf temperature (°C or K); Twet is the canopy temperature 
(°C or K) for when the plant is experiencing no water limi-
tations and operating at a full transpiration rate; Tdry is the 
canopy temperature when the plant is no longer transpiring 
(°C or K), and Ta is the air temperature at a screening height 
above the canopy (°C or K).

Ben-Gal et al. (2009) have indicated that CWSI might be 
calculated empirically or analytically. Empirical methods’ 
accuracy is highly dependent on the precision of temperature 
measurements and the adequate estimation of Tdry and Twet 
that are often associated with the field conditions. These 
canopy temperatures, however, do not have standardized 
thresholds for defining when the surface is considered dry 
or wet enough to be representative for the water stress level 
assessment. Analytical methods attempt to overcome the 
issues with uncertainties derived by the dry and wet condi-
tions based on the incorporation of Rn, sensible heat (H), and 
latent heat (LE) fluxes from the surface energy balance, as 
indicated by Jones (1999). When compared to temperature-
based methods, surface heat flux approaches to estimate 
CWSI tend to represent better the influence of climate con-
ditions, soil type, and canopy characteristics on addressing 
the levels of water stress for plants. It is because addressing 
the different incoming and outgoing sources of heat might 
introduce several different variables that describe dynamic 
processes that induce canopy water stress.

Based on those concepts, there have been approaches 
to calculate CWSI that incorporate more environmental 
variables into the assessment of water stress conditions for 
vegetated surfaces. Osroosh et al. (2015) have presented a 
method to determine analytical CWSI based on the work 
of Idso et al. (1981) that introduces Rn, wind speed, and 

(1)CWSIo =

(
Tc − Ta

)
−
(
Twet − Ta

)
(
Tdry − Ta

)
−
(
Twet − Ta

) ,
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VPD into the modeling process for CWSI, combined with 
a time-threshold method to assess when irrigation water 
should be scheduled.

O’Shaughnessy et al. (2011) have shown the applicabil-
ity of remote sensing thermography and thermometry into 
providing reliable estimates of canopy stress levels based 
on the radiometric surface temperature obtained from the 
image processing for soybeans and cotton. Zarco-Tejada 
et  al. (2013) have applied remote sensing methods to 
assess empirical CWSI using thermal band images coupled 
with photochemical reflectance index (PRI) that accounts 
for the biomass architectural and healthiness conditions 
of the canopy.

Sensible heat and latent heat fluxes are interconnected 
as on-site environmental and soil water availability condi-
tions are dynamically changing over space and time. The 
ratio between sensible and latent heat fluxes, proposed by 
Bowen (1926), was named the Bowen ratio (βo). This ratio 
gives physical meaning to the effects of water stress on the 
magnitude of those surface heat fluxes. Taiz et al. (2015) 
mentioned that when the soil profile has limited (stored) 
water content, the magnitude of βo is more substantial than 
when no stress conditions are predominant. Therefore, 
well-watered field conditions allow the magnitude of LE 
to be higher than H, while aggravated water deficit over 
time leads latent heat fluxes to be smaller than sensible 
heat fluxes.

When water content within the root zone is available to 
meet canopy hydration demands, micrometeorology condi-
tions of the field have a powerful impact on the dynamics 
of vapor and heat transfer. However, when stress conditions 
do not allow the crop to physically extract the amount of 
water needed to keep photosynthesis and other internal bio-
chemical processes under their natural ongoing stages, soil 
properties will significantly influence the physical processes 
that derive H and LE. Thus, there is an increase in leaf water 
suction potential that causes transpiration to be reduced over 
time (Gardner and Ehlig 1963).

As an alternative approach to estimate CWSI, this paper 
introduces a surface energy balance approach based on 
weather and remote sensing data. The primary considera-
tion for such method is to explore the intrinsic association 
between canopy water stress and its impact on the magnitude 
of sensible heat flux and the remaining components of the 
surface energy balance. The proposed approach is based on 
aerodynamic surface temperature (To) modeling to estimate 
sensible heat flux, a critical element for the single-source H 
model. Thus, the objectives of this paper are as follows: (a) 
to apply a surface aerodynamic temperature-based energy 
balance method to estimate maize water stress (CWSI); (b) 
to assess the proposed CWSI model’s applicability for map-
ping water stress levels across an agricultural field; and (c) to 
evaluate SWSI curve-fitting models, for extrapolating stress 

levels from a point-source to a spatial scale based on the 
estimation of CWSI.

Materials and methods

Experiment site description

The experimental site was the Limited Irrigation Research 
Farm (LIRF) managed by the United States Department of 
Agriculture—Agricultural Research Service (USDA-ARS) 
in Greeley, Colorado, USA; latitude N 40.4463°, longi-
tude W 104.6371°, and elevation of 1432 m (Fig. 1). Data 
were collected in 2017 and 2018 from the end of July to 
September.

The canopy underwent water stress due to low-frequency 
irrigation water application. Only two major irrigation 
events were scheduled for the water-stressed treatment. 
Field 1 and field 2 were the low-frequency irrigation plots in 
2017 and 2018, respectively (Fig. 1). Irrigation events were 
timed by crop characteristics such that the first irrigation was 
2–3 weeks before anthesis/pollination to assure getting to 
full-ground cover, and the second irrigation was in the late 
milk kernel stage. The field dimensions were 190 m × 110 m. 
The maize variety was Dekalb 51–20 (drought tolerant) for 
both years with irrigation supplied by subsurface drip. The 
drip irrigation emitters were 0.30 m apart and buried 0.23 m 
deep on 0.76 m distance between rows. Plant density was 
87,500 plants per hectare. Tillage was accomplished by 
strip-tilling before planting, which occurred on DOY 152 
and 130 in 2017 and 2018, respectively. Nitrogen ferti-
lizer was applied as urea ammonium nitrate (UAN) at 32% 
concentration rate. In 2017, nitrogen was applied on DOY 
186 and 213, at a rate of 39 and 76 kilograms per hectare, 
respectively. For the 2018 season, nitrogen was used on 
DOY 197 and 226 at a rate of 72 and 50 kilograms per hec-
tare, respectively. Irrigation scheduling followed the paper 
FAO-56 standard approach method (Allen et al. 1998), based 
on crop coefficient and reference alfalfa ET calculated as 
indicated by ASCE-EWRI (2005). The basal maize crop 
coefficient (kcb) was regional coefficient based on the work 
developed by Garcia et al. (2013). The stress coefficient (ks) 
determination was based on the relationship among total 
available water (TAW), readily available water (RAW), and 
soil water deficit (Dr).

Data collection and instrumentation

The measurements of required data to derive SWSI and to 
model and assess CWSI estimation were done using a total 
of 42 sensors. Table 1 shows the type of sensors used, in 
2017 and 2018, for the measurements needed for the estima-
tion and assessment of modeled CWSI at LIRF.
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On‑site weather data

Weather data for managing irrigation were obtained from 
the Colorado Mesonet Agricultural Weather Station Net-
work (CoAgMet) station Greeley 04 (GLY04), which is 
located within the research facility. The GLY04 station is 
located on a well-watered 12-cm height clipped grass field. 
On-site weather data for modeling Rn and H were collected 
every minute and averaged every 15 min from aerodynamic 

tower stations (SAT) located, 8 m from the northwest (NW) 
corner of the field. The location of the SAT stations was 
chosen to allow better fetch conditions for the mixing of 
air and its interaction with the surface, considering that 
wind speed direction at the research facility site is mainly 
from southwest. These data included wind speed, Ta, and 
relative humidity (RH), measured using cup anemometers 
and hygrometers, respectively, at the height of 3.3 m above 
ground level (AGL).

Fig. 1  Top view of the fields at LIRF nearby Greeley, CO

Table 1  Summary of sensors used at LIRF in 2017 and 2018

Sensor type Model type Manufacturer name Manufacturer location

Soil water content Mini-Trace 6085 Soil moisture Equipment Santa Barbara, CA, USA
Multispectral radiometer MSR5 Cropscan, Inc. Rochester, MN, USA
Soil water content 5TE Decagon Devices, Inc. Pullman, WA, USA
Infra-red thermometer SI-111 Apogee Instruments Logan, UT, USA
Ta and relative humidity (RH) HMP45C Vaisala Vantaa, Finland
Wind speed cup anemometer 03101-L RM Young Company Traverse City, MI, USA
Net radiometer NR-Lite Kipp and Zonen Delft, The Netherlands
Net radiometer CNR01 Kipp and Zonen Delft, The Netherlands
Soil heat flux plate HFT3-L Radiation and Energy Balance Inc. Bellvue, WA, USA
Canopy analyzer LAI 2000 LICOR Lincoln, NE, USA
Sap flow meter EXO Sensors Dynamax, Inc. Houston, TX, USA



505Irrigation Science (2020) 38:501–518 

1 3

On‑site remote sensing data

Remote sensing data were acquired on-site through point 
measurements using handheld and on-site stationary sen-
sors/stations. Periodic readings were taken over the maize 
surface at nadir. These readings included radiometric surface 
temperature (Ts), near-infrared (NIR), and red (RED) surface 
reflectance. Surface temperature was measured every minute 
and data were averaged every 15 min at two measurement 
stations with SI-111 IRTs (Apogee Instruments, Logan, UT, 
USA) located, respectively, at about 1/4 and 1/2 total length 
of the field from the north side (Fig. 2). The measurements 
were averaged between the two stations to provide a sym-
bolic value of surface temperature for the entire field area. 
Surface reflectance data were measured once a week in 2017 
and twice a week in 2018 at 1/4, 1/2, and 3/4 total length of 
the field and averaged to represent the entire area of study.

On‑site soil water content data

Volumetric soil water content (VWC) measurements were 
collected using 5TE water content, temperature, and electri-
cal conductivity sensor (Decagon Devices, Pullman, WA, 
USA). Soil water content data were used to calculate the soil 
water stress index (SWSI) for the CWSI model comparison. 
Measurements of VWC were done at each on-site measure-
ment station at depths of 4, 20, 50, 80, and 110 cm (Fig. 3).

VWC data from 5TE sensors at 4 cm depth were cross-
calibrated, per location, using mini-trace time-domain 

reflectometer (TDR) data. The VWC data for other depths 
were adjusted based on neutron probe (NP) VWC measure-
ments, which were taken once and twice a week in 2017 and 
2018, respectively. The TDR and NP readings were done at 
the following depths: 0.15, 0.30, 0.60, 0.90, and 1.20 m. The 
resulting linear calibration approach was applied to adjust 

Fig. 2  Schematic of the layout 
of the on-site measurement sta-
tions at LIRF in 2017 and 2018

Fig. 3  Root zone profile and the soil water content sensors installed at 
respective depths and soil layer thickness
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the measured data from the 5TE sensors, as indicated by 
Eq. (2):

where  VWC5TE represents the volumetric water content from 
5TE sensor  (m3/m3),  VWCi refers to the volumetric water 
content from TDR or NP  (m3/m3), and a1 and a2 are the 
empirical fitted coefficients for the linear calibration model. 
The TDR and NP readings were done once and twice a 
week, respectively, in 2017 and 2018.

Calculation of CWSI

The calculation of CWSI might be approached as indicated 
by Eq. (3):

where  ETa and  ETc refer to actual evapotranspiration (mm) 
and crop evapotranspiration (mm), respectively, for well-
watered field conditions.

When rewriting Eq. (3) in terms of energy density flux, 
CWSI could be determined as

where λw is the latent heat of vaporization of water (J/Kg), 
 LEa and  LEc are, respectively, the actual latent heat flux (W/
m2) and the latent heat flux for unstressed water conditions 
(W/m2).

When the crop does not undergo water stress conditions, 
 ETa ~ ETc and that results on CWSI = 0. As the soil water 
content of the root zone starts to be depleted over time with 
no root zone recharge from rain or irrigation events, the root 
depth storage capacity of the soil profile results in  ETa < ETc 
and 0 < CWSI < 1.

Actual evapotranspiration might be written in terms of 
latent heat flux, as the residual of the surface energy balance 
approach, indicated by Eq. (5):

Evapotranspiration for non-stressed conditions occurs 
when all available energy (Rn − G) is used for evaporating 
water from the topsoil and transpiring water from the can-
opy. Thus, when there are no limitations in water availability 
within the root zone, the plants will transpire at higher rates 
and the soil will gradually lose water mass due to evapora-
tion, which results in having smaller values of sensible heat 
flux in comparison to available energy. Therefore, it is rea-
sonable to indicate the latent heat flux for fully unstressed 

(2)VWCi = a1VWC5TE + a2,

(3)CWSI = 1 −
ETa

ETc

=
ETc − ETa

ETc

,

(4)CWSI =
�wETc − �wETa

�wETc

=
LEc − LEa

LEc

,

(5)LEa = Rn − G − H.

water conditions as equivalent to the available energy, as 
indicated by Eq. (6):

Substituting Eqs. (5) and (6) in Eq. (4), CWSI is then 
calculated as a function of sensible heat flux and available 
energy, as follows:

Spectral remote sensing indices’ calculation

The following spectral remote sensing indices were incor-
porated, alongside with radiometric surface temperature, to 
estimate sensible heat flux and available energy: normalized 
difference vegetation index (NDVI), optimized soil adjusted 
vegetation index (OSAVI), leaf area index (LAI), and frac-
tional percent cover (fc).

NDVI is calculated as indicated by Eq. (8):

OSAVI was developed by Rondeaux et al. (1996) as an 
attempt to minimize the effects of soil background on sur-
face reflectance readings, and it is indicated by Eq. (9):

where L is the adjusted factor term that reduces the noise 
caused by the soil reflectance on the vegetation index, and it 
depends on LAI ranges. An average value of L for most soil 
was assumed to be 0.16 (Rondeaux et al. 1996).

Leaf area index (LAI) was calculated based on the work 
developed by Chávez et al. (2010), Eq. (10):

Fractional percent cover was estimated following the 
empirical linear model developed by Johnson and Trout 
(2012), which relates NDVI to vegetation cover percent:

NDVI and OSAVI were initially calculated using meas-
ured (around noon time) RED and NIR surface reflec-
tances, at different locations in the field, and were aver-
aged and assumed representative for a given day. It was 
assumed that multispectral surface reflectance changes due 
to solar angle and environmental effects such as cloudiness 
conditions, wind speed, and temperature might have small 

(6)LEc ≈ Rn − G.

(7)CWSI =

(
Rn − G

)
−
(
Rn − G − H

)
(
Rn − G

) =
H

Rn − G
.

(8)NDVI =
NIR − RED

NIR + RED
.

(9)OSAVI =
(NIR − RED)(1 + L)

(NIR + RED + L)
,

(10)LAI = 0.263e(3.813OSAVI).

(11)fc =

{
0, NDVI < 0.15

1.26NDVI − 0.18, NDVI ≥ 0.15
.
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effects on reflectance values around noontime (11 am to 
3 pm MST). Thus, small changes in NDVI and OSAVI 
values were neglected and the indices were assumed to 
be constant from 11 am to 3 pm. The MSR5 multispectral 
radiometer detects incoming shortwave radiation (up look-
ing sensors) and reflected radiation (down looking sen-
sors). MSR5-derived surface reflectance measurements 
(after processing) include sun angle corrections, which 
minimize the differences in surface reflectance around 
solar noontime.

For days without measurement, NDVI and OSAVI were 
estimated through non-linear empirical equations fitted using 
MATLAB curve fitting toolbox feature, considering on-site 
data measurements, for each year, by having the day of the 
year (DOY) as a predictor, Eqs. (12) to (15):

where  NDVIi and  OSAVIi refer to vegetation index for a 
particular year. Subscripts 17 and 18 refer to the years of 
2017 and 2018, respectively.

Net radiation modeling

Net radiation was calculated following the radiation budget 
(long and short waves) approach:

where α refers to surface albedo, Rs is solar radiation or 
incoming shortwave radiation (W/m2), εa and εs are air and 
surface thermal emissivities, respectively; TaK and TsK are 
air and surface temperature (K), respectively; and σ refers 
to the Stefan–Boltzmann constant (5.67 × 10−8 W/m2/K4).

Solar radiation data were obtained on-site, for both years, 
using the 4-way net radiometer installed at 3.2 m AGS. 
Albedo was estimated following a non-linear empirical 
equation (r2 = 0.75) developed through MATLAB curve fit-
ting toolbox feature and based on on-site data, in 2018, that 
relates α measured by the 4-way net radiometer and LAI 
measured data collected using the LICOR LAI 2000 m:

Air emissivity was calculated based on the work of Craw-
ford and Duchon (1999), a modification of Brutsaert (1975) 
to account for cloudiness conditions of the field:

(12)NDVI17 = 0.802 sin (0.024DOY + 2.107),

(13)NDVI18 = 0.783 sin (0.028DOY + 1.433),

(14)OSAVI17 = 0.674 sin (0.024DOY + 2.036),

(15)OSAVI18 = 0.680 sin (0.029DOY + 7.516),

(16)Rn = (1 − �)Rs − �s�T
4
sK

+ �s�a�T
4
aK
,

(17)� = 0.016LAI(−2.135) + 0.179.

where clf is the cloud fraction term, mo refers to the month 
of the year (e.g., January = 1 February = 2), and ea is the 
actual vapor pressure in mb.

Surface emissivity (εs) was estimated using Eq. (19) after 
Brunsell and Gillies (2002); in which, for a given surface 
(vegetation and exposed soil), it is represented as a function 
of the fractional vegetation cover:

where 0.98 is chosen as the surface emissivity of a fully 
vegetated area and 0.93 is assumed to be the surface emis-
sivity of bare soil.

Soil heat flux modeling

Soil heat flux was estimated following the semi-empirical 
model developed by Bastiaanssen et al. (1998) that relates 
G to surface remote sensing vegetated indices and net 
radiation:

Sensible heat flux modeling

The modeling for sensible heat flux is performed based on 
the bulk aerodynamic resistance approach, Eq. (21):

where ρa stands for air density (kg/m3),  Cpa is the specific 
heat of the air (~ 1005 kg/J/K), rah is the aerodynamic resist-
ance (s/m), and To and Ta are aerodynamic surface tempera-
ture (°C) and air temperature (°C), respectively.

Calculation of aerodynamic resistance

When the atmosphere is under adiabatic conditions, rah is 
calculated by Eq. (22):

where Zm is the wind speed height of measurement (m), um 
is the measured wind speed at Zm AGL (m/s), and k is the 
Von Karman constant (0.41).

For atmospheric conditions when the surface is warmer 
(unstable) or cooler (stable) than the surrounding air, rah 

(18)

�a =
[
clf + (1 − clf)(1.22 + 0.06 sin

(
[mo + 2]

�

6

)]( ea

TaK

)1∕7

,

(19)�s = 0.98fc + 0.93
(
1 − fc

)
,

(20)G =
Ts

�

(
0.0032� + 0.0062�2

)(
1 − 0.978NDVI4

)
.

(21)H = �aCpa

(
To − Ta

rah

)
,

(22)rah =
ln
(

Zm−d

Zom

)
ln
(

Zm−d

Zoh

)

umk
2

,
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calculation must include a stability correction factor to 
adjust to real conditions. Equation (23) indicates the adjusted 
rah model (Yasuda 1988):

where u* is the friction velocity (m/s), ψh the atmospheric 
stability correction function for heat transfer, and Zoh the 
roughness length for heat transfer (m).

The stability atmospheric correction function for heat 
transfer is given by Eq. (24) for unstable conditions (Yasuda 
1988):

where LMO refers to the Monin–Obukhov stability length 
factor (m).

The Monin–Obukhov stability length variable was named 
after the work of Monin and Obukhov (1954), based on simi-
larity theory, and it is calculated as

where g is the gravity acceleration (9.81 m/s2).
According to Yasuda (1988), ψh is given by Eq. (28) for 

stable atmospheric conditions:

Calculation of friction velocity

Friction velocity might be estimated, under neutral atmos-
pheric conditions using Eq. (29)

where Zom is the roughness length for momentum transfer 
(m); explained in the next section.

For non-neutral atmospheric conditions (Yasuda 1988)

(23)rah =
ln
(

Zm−d

Zoh

)
− �h

u∗k
,

(24)�h = 2 ln

(
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2

2

)
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(
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1

2

)
,
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16
(
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)
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,
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16Zoh
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,
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∗
Ta�aCpa

gkH
,

(28)�h = 6 ln
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)[
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LMO

−
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.

(29)u∗ =
umk

ln
(

Zm−d

Zom

) ,

where ψm is the atmospheric stability correction function for 
momentum transfer (m).

When the atmospheric conditions are considered unsta-
ble, ψm is calculated as indicated by Eq. (31):

where

For stable atmospheric conditions, it is assumed that 
ψh = ψm.

Calculation of roughness canopy elements

Zero-displacement height and roughness lengths for momen-
tum and heat transfer might be calculated using remote 
sensing approaches that incorporate variables about sur-
face biomass conditions into modeling. Zero-displacement 
height and roughness length for momentum transfer were 
calculated as indicated by Choudhury and Monteith (1988) 
based on a model that incorporates LAI and canopy height 
as predictors. Equations (35) and (36) state, respectively, the 
models for d and  Zom.

where X = 0.20 LAI; Zo’ is the roughness length of the soil 
surface and assumed to be 0.01 m; and hc is the canopy 
height (m).

Roughness length for heat transfer is often taken as 10% 
of Zom (Brutsaert 1982). Canopy height was calculated based 
on an empirical non-linear exponential model developed 
using on-site measured data that relate hc to LAI, as indi-
cated by Eq. (37) (r2 = 0.91):

(30)u∗ =
umk

ln
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)
+ �m

,

(31)�m = �m2 − �m1,
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(34)x3 =
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.
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,
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Aerodynamic surface temperature modeling

The surface aerodynamic temperature (To) was estimated 
based on the approaches developed by Costa-Filho (2019). 
Models of To were developed based on multiple linear equa-
tions that incorporate remote sensing variables and weather 
data as predictors. Equation (38) is the aerodynamic tem-
perature model used in the sensible heat flux equation,

where rp refers to turbulence mixing-row resistance (s/m).
The rp variable was developed by Costa-Filho (2019) as 

an attempt to incorporate the interactions between crop row 
layout and air flowing above the canopy into the modeling 
of sensible heat flux. It might be calculated, for row crops 
oriented north–south, as following:

where θu is the wind speed direction in degrees.
Data for sensible heat flux modeling were filtered for 

wind speed direction to avoid the influence of nearby areas 
that are not the same surface type as the corn fields used for 
the experiment. Only wind speed direction ranges from 110° 
to 160° and 200° to 250° were considered since those direc-
tions allow the air to flow through longer distances above 
the maize fields.

Calculation of SWSI

Daily soil water stress index was estimated from measured 
soil water content data on-site as determined by Chávez 
(2015):

where  VWCt,  VWCa, and  VWCWP refer to, respectively, 
volumetric water content threshold for triggering irrigation 
 (m3/m3), the actual measured volumetric water content in 

(37)hc = 0.697e(0.236LAI) − 3.42e(−3.177LAI).

(38)To =

⎧
⎪⎨⎪⎩

−8.742fc + 0.571Ta + 0.529Ts + 0.806rp + 3.295, 0.85 ≤ LAI ≤ 1.50

−9.168fc + 0.485Ta + 0.575Ts − 0.160rp + 6.491, 1.50 < LAI ≤ 2.50

4.708fc + 0.350Ta + 0.580Ts + 0.086rp, 2.50 < LAI ≤ 3.50

−1.912fc + 0.443Ta + 0.509Ts + 0.115rp + 5.014, 3.50 < LAI ≤ 5.00

.
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(40)SWSI =

{
VWCt−VWCa

VWCt−VWCWP

, VWCt > VWCa

0, VWCt ≤ VWCa

,

the root zone  (m3/m3), and volumetric water content at per-
manent wilting point  (m3/m3).

The volumetric water content threshold for irrigation 
purposes is calculated as indicated by Eq. (41):

where MAD means management allowed depletion and 
 VWCFC is the volumetric water content at field capacity 
 (m3/m3).

Field capacity data were obtained using on-site volu-
metric water content from neutron probe readings a few 

days after a significant rainfall or irrigation event. For the 
year 2017, volumetric water content measured on DOY 
226 was considered  VWCFC due to a 29 mm rainfall event 
that occurred on DOY 222. For the year 2018, field capac-
ity conditions were assumed to be achieved on DOY 228 
since a 107 mm irrigation event took place on DOY 225. 
Saturation is not necessarily attained after each irrigation 
or rainfall event. Field capacity is defined as the soil—
moisture content reached in an initially thoroughly wet 
field—that is at or near saturation, after the rate of drain-
age by gravity has markedly decreased. Field capacity cor-
responds to the soil moisture content after gravitational 
water has been drained from the soil. The rate of drainage 
depends on the soil, but field capacity is typically assumed 
to occur 24–48 h after thorough wetting by irrigation or 
rainfall (Taylor and Ashcroft 1972).

The SWSI for the deficit irrigated plot was calculated 
with MAD of 0.40, based on the recommendation by 
Panda et al. (2004), suggesting that desirable maize MAD 
should be less than 45% for maize. MAD was kept the 
same value of 0.40 for the data being from the end of July 
to September. Most of the data used on SWSI analysis 
occurred when maize was near maximum canopy height. 
Thus, MAD values were assumed not to change drastically, 
which could allow it to be assumed constant for the entire 
dataset analyzed.  VWCWP was obtained from the United 
States Natural Resources Conservation Service (NCRS) 
soil survey website. Soil texture classification followed 
the range of values provided by Saxton and Rawls (2006) 
based on values of  VWCFC and  VWCWP per soil layer of 
the root zone. Daily SWSI data were initially calculated 
per soil layer and averaged for each location of measure-
ment. Only days with no occurrence of rainfall or irri-
gation events were considered to avoid dealing with the 
three-dimensional redistribution of soil water content 

(41)VWCt = MAD
(
VWCFC − VWCWP

)
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within the root zone for the next days after the soil profile 
is replenished.

To assess the capabilities of inferring on SWSI based on 
estimations of CWSI using the energy balance approach, 
three non-linear empirical models were fitted to the SWSI 
and CWSI data to identify potential equation types that 
could be representative on providing information about the 
level of water stress on the root zone. It was assumed a level 
of significance of 0.05 for testing the statistical significance 
of the fitted coefficient estimation. The models for SWSI as 
a function of estimated CWSI were the following: Weibull, 
rational, and sum of sine functions as in Eqs. (42), (43), and 
(44), respectively.

Independent assessment of the CWSI model

To assess the performance of the proposed CWSI model, 
independently observed CWSI values were used. These inde-
pendent observed values were based on sap flow readings; 
used as a reference to evaluate estimated CWSI  (CWSIE). 
Both CWSI approaches are further detailed below:

(a) Crop water stress index calculated based on Eq. (7) 
regarding measured Rn, G, and H from surface energy 
balance  (CWSISEB). On-site sensible heat flux meas-
ured data were obtained from the Bowen ratio method.

(b) Crop water stress index calculated using Eq. (3), in 
which  ETa data were obtained from on-site sap flow 
measurements of canopy transpiration on the deficit 
irrigated field (area of interest) and  ETc data were col-
lected from sap flow canopy transpiration measure-
ments on the non-stressed field  (CWSIsap).

Measured surface heat fluxes

Net radiation data were collected using net radiometers at 
3.2 m AGL at the stationary locations identified in Fig. 2 in 
2017 and 2018.

Measured soil heat flux at the surface level was obtained 
through the soil heat flux plate method, which consists of 
measuring the heat flux density at a certain depth in the 
root zone and accounting for the heat storage on the soil 
layer above the plate (Ochsner et al. 2006). For each sta-
tion of measurement, two HFT3-L soil heat flux plates 

(42)SWSI = c1c2
[
CWSI(c2−1)

]
exp

[
−c1(CWSIc2)

]

(43)SWSI =
c3(CWSI)+c4

CWSI2+c5(CWSI)+c6
,

(44)SWSI = c7sin
[
c8(CWSI) + c9

]
.

(Radiation and Energy Balance Inc, Bellevue, WA, USA) 
were installed, one nearby the maize root zone (west) and 
another between crop rows (east) at a depth of 8 cm each. 
Two 5TE soil water content sensors were installed at 4 cm 
following the same geographical orientation of the soil heat 
flux plates for determining the stored heat within the soil 
layer above the plate. Two T107 soil temperature probes 
(Campbell Scientific, Inc., Logan, UT, USA) were installed 
at 2 and 6 cm to account for the change in soil temperature 
over time into the determination of surface soil heat flux.

Measured sensible heat flux through the Bowen ratio 
method was obtained from the SAT towers installed at the 
north section of the field in both years. In 2017, the heights 
of measurement for Ta and RH were 2.60 and 3.20 m AGL. 
In 2018, the heights of measurement were of 2.60 and 
4.20 m AGL. Values of sensible heat flux from the Bowen 
ratio method were filtered based on the criteria by Perez 
et al. (1999), which recommend that βo values must be repre-
sentative for the measured on-site data time and magnitude. 
For all surface heat flux measurements, data were collected 
every minute and averaged over 15 min. Only hourly data 
around noon (11 am to 3 pm MST), for the measured surface 
heat fluxes, were considered for the analysis.

Sap flow measurements

Whole plant transpiration was measured with stem heat bal-
ance sap flow EXO sensors (Dynamax, Inc, Houston, TX, 
USA) (Sakuratani 1981). Gages were installed on four rep-
resentative plants selected at random at different locations 
within 20 m of each other in both deficit and non-stressed 
irrigation treatments. Data were collected for approximately 
2 months from August through September in both years.

Installation and settings were the same as used by Han 
et al. (2018). The bottom 2–3 leaves and leaf sheaths were 
removed a day before installing gages. Sensors were then 
mounted on stem internodes that were covered with plastic 
wrap to prevent moisture from stems from entering the sen-
sors. A thin film of silicon was applied to facilitate thermal 
exchange between the wrapped stem internodes and sen-
sors. Sensors were covered with stretchable and wicking 
Velcro, and then with waterproof fabric sealed with electri-
cal tape at the top, insulating foam, and finally with insulated 
foil bubble wrap that was secured with zip ties and sealed 
with electrical tape at the top. The voltage was set to 4.2 to 
4.3 V dc and resulted in power ranging from 0.20 to 0.27 W 
depending on the size of the sensor. The temperature applied 
ranged from 0.5 to 4 °C above ambient and there was no 
stem damage from heat.

The average value of the thermopile radial heat loss 
factor (Ksh) is established when there is low to zero flow 
and is required to solve the energy balance of the sap flow 
gages. Average Ksh was computed during 3:30–5:30 h MST 
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(Mountain Standard Time) and set to the daily Ksh at 5:30 h. 
Since the formula for calculating Ksh depends on zero sap 
flow heat flux, there may be a small error in sap flow calcula-
tions if there is transpiration during the period used for Ksh 
computation. We estimate that maximum transpiration loss 
during this period may be 4 g/h based on greenhouse meas-
urements (Comas et al. 2018). If this water loss was entirely 
from transpiration rather than evaporation, total error from 
the Ksh might be as high as 1.6%, which is not substantial 
for this application.

Sensor outputs were collected every minute and recorded 
as 15-min means. Data were screened for abnormalities, 
which were removed. Sap flow was determined as the mass 
of water transpired by the plant per unit time (g h−1  plant−1) 
and expressed per ground area by dividing by the planting 
density. Measurements were averaged per treatment for 
comparisons with ET estimates from modeled CWSI. Sap 
flow measurements were considered actual measurements of 
plant water-use in analyses, and have been previously vali-
dated (Dynamax 2016; Comas et al. 2018). Measurements 
were taken as ET because it was assumed that evaporation 
from the topsoil was negligible based on the irrigation sys-
tem type and estimates of CWSI were limited to days with-
out wetting events. The topsoil portion of the root zone was 
assumed to be the first 20 cm of soil in the root zone profile.

Statistical model analysis

The following statistical variables were calculated to evalu-
ate and compare the results based on statistical approaches 
to indicate model performance: mean bias error (MBE), root 
mean square error (RMSE), refined index of agreement (dr), 
and Pearson’s correlation coefficient (r). MBE and RMSE 
are indicated by Eqs. (45) and (46), respectively:

where n is the sample size, Ei and Oi mean, respectively, 
the estimated and measured or observed values. In addi-
tion, CWSI MBE and RMSE are presented as percent val-
ues. To do this, the NMBE (Normalized Mean Bias Error) 
measure was chosen. NMBE is a normalization of the MBE 
index that is used to scale the results of MBE, making them 
comparable. It quantifies the MBE index by dividing it by 
the mean of measured values, giving the global difference 
between the real values and the predicted ones. In the case 
of RMSE (%), the CV(RMSE) (Coefficient of Variation of 
the Root Mean Square Error) was adopted. This statistic 

(45)MBE =

∑�
Ei − Oi

�
n

(46)RMSE =

�∑�
Ei − Oi

�2
n

measures the variability of the errors between measured and 
simulated values. It indicates the model’s ability to predict 
the overall load shape that is reflected in the data. The appli-
cation of NMBE and CV(RMSE) followed the procedure 
as adopted in Ramos-Ruiz and Fernández-Bandera (2017).

The modified index of agreement, developed by Willmott 
et al. (2012), is indicated by Eq. (47), where Ē and Ō are the 
sample mean of estimated and measured or observed values, 
respectively.

Pearson correlation coefficient was calculated as follow-
ing (Ott and Longnecker 2001):

Results and discussion

Calibration of soil water content data per root zone 
layer

The coefficients from each soil water content calibration 
equation were different between years of measurement 
because the stations were in different fields in 2017 and 2018 
(Tables 2 and 3). The differences in magnitude between sta-
tions during the year 2017 indicate that the soil texture and 
bulk density of the root zone profile change throughout the 
soil profile.

Soil texture per root zone layer

Soil water content data suggest that soil texture was different 
between the 0.50 and 0.80 m soil depths in one of the two 
locations in 2017 and both locations in 2018 (Tables 4 and 
5). In 2017, the volumetric water content at field capacity 
was 38% and 40% greater for station 1.1 than station 1.2, at 
0.50 m and 0.80 m depth, respectively. 

Substantial differences in field capacity values between 
the location at a given soil depth might indicate that the soil 
bulk density is not the same and affects the estimations of 
measured soil heat flux, soil water deficit, by introducing 
potential variability on the observed data due to the meas-
urements obtained at a location with different soil charac-
teristic properties.

(47)dr =

⎧
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1 −
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2
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Crop root zone tends to expand into deeper soil depths 
to obtain water when sandy soil texture type is predominant 
(Jackson et al. 2000). Overall, there would be a potential for 
significant large values for CWSI based on lighter soil type, 

since the depletion of water is higher than that for heavy 
soil texture (Saxton et al. 1986) and the release of water to 
plants might affect the biophysical processes that regulate 
transpiration.

Table 2  Calibration equation 
coefficients for soil water 
content measured with 5TE 
sensor in 2017

Station ID Depth (cm) Response vari-
able

A1 (slope) A2 (interceptor) N R2

1.1 4 TDR 0.403 0.100 7 0.71
20 NP 1.347 − 0.059 11 0.91
50 NP 0.665 0.071 11 0.89
80 NP 1.297 − 0.067 11 0.92

110 NP 0.444 0.065 11 0.77
1.2 4 TDR − 0.320 0.155 5 0.94

20 NP 1.462 − 0.068 11 0.87
50 NP 1.317 − 0.022 11 0.96
80 NP 1.108 − 0.013 11 0.93

110 NP 0.706 0.047 11 0.94

Table 3  Calibration equation 
coefficients for soil water 
content measured with 5TE 
sensor in 2018

Station ID Depth (cm) Response vari-
able

A1 (slope) A2 (interceptor) N R2

2.1 4 TDR 1.182 0.028 10 0.91
20 NP 0.864 0.041 9 0.93
50 NP 0.673 0.010 16 0.82
80 NP 1.228 − 0.040 13 0.96

110 NP 1.749 − 0.018 9 0.96
2.2 4 TDR 1.424 − 0.063 15 0.84

20 NP 1.462 − 0.068 9 0.94
50 NP 1.000 − 0.004 13 0.96
80 NP 1.799 0.118 14 0.85

110 NP 1.867 − 0.182 9 0.97

Table 4  Summary of root zone 
characteristics based on VWC 
data for deficit irrigated field 
in 2017

On-site data (NP) NCRS data Saxton 
and Rawls 
(2006)

Station ID Depth (cm) VWCFC  (m3/m3) VWCWP  (m3/m3) VWCt  (m3/m3) Soil texture

1.1 4 0.167 0.082 0.133 Sandy loam
20 0.203 0.118 0.169 Sandy loam
50 0.329 0.113 0.243 Silt loam
80 0.335 0.167 0.268 Clay loam

110 0.236 0.054 0.163 Sandy loam
1.2 4 0.230 0.082 0.171 Sandy loam

20 0.214 0.118 0.176 Sandy loam
50 0.201 0.113 0.166 Sandy loam
80 0.202 0.054 0.143 Sandy loam

110 0.202 0.054 0.143 Sandy loam
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Soil water stress index assessment

The year of 2018 was drier than 2017, based on the number 
and magnitude of rainfall events indicated in Fig. 4. Drier 
seasons allow the crop to undergo water stress conditions for 
more extended periods than when multiple wetting events 
occur. Thus, the SWSI in 2018 indicates trends of increased 
SWSI for longer periods than SWSI in 2017. Different soil 
types affect the capacity of water to be available for extrac-
tion by the plants. The different soil types in which the 
data were collected could explain the differences in SWSI 
between two locations within the same field in 2017.

Regarding 2017 data, the location of stations 1.1 and 1.2 
provided VWC data from different soil textures at deeper 
soil layers, as indicated by Table 4. The presence of heavy 
soil textures at 50 and 80 cm depths at location 1.1 sug-
gests that the overall soil specific area is higher than that at 
station 1.2. At any given matric potential, clayey soils tend 
to have higher volumetric soil water content compared to 
sandy soils. Thus, SWSI at station 1.1 may be lower than at 
station 1.2, a location characterized by a more homogene-
ous sandy soil type. For 2018, the soil texture between sta-
tions 2.1 and 2.2 was very similar and allowed the SWSI vs. 
DOY scattered points to follow a trend, which is indicated 

Table 5  Summary of root zone 
characteristics based on VWC 
data for deficit irrigated field 
in 2018

On-site data (NP) NCRS data Saxton 
and Rawls 
(2006)

Station ID Depth (cm) VWCFC  (m3/m3) VWCWP  (m3/m3) VWCt  (m3/m3) Soil texture

2.1 4 0.195 0.082 0.150 Sandy loam
20 0.229 0.118 0.185 Sandy loam
50 0.145 0.082 0.120 Loamy sand
80 0.163 0.054 0.120 Sandy loam

110 0.266 0.145 0.218 Clay loam
2.2 4 0.223 0.082 0.167 Sandy loam

20 0.197 0.118 0.165 Sandy loam
50 0.136 0.082 0.114 Loamy sand
80 0.302 0.174 0.251 Clay loam

110 0.266 0.145 0.218 Clay loam

Fig. 4  Comparison between SWSI from the point-measurement locations in 2017 and 2018 at LIRF.  a Indicates the SWSI vs. DOY for 2017 
data.  b Shows the SWSI vs. DOY for 2018 data
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in Fig.  4b. After major irrigation events, the SWSI on both 
locations decreased significantly reaching values near zero, 
which suggests no stress conditions on the days following 
the wetting event. Rainfall events seemed to have less effect 
on the SWSI in 2018 than 2017 since there is no evidence of 
changes in stress conditions after rainfall replenished the soil 
profile. The magnitude of rainfall water depth, compared to 
the irrigation water depth application, was overall only 9% 
of the most significant irrigation event on DOY 225 in 2018. 
In 2017, the average ratio between rainfall and irrigation 
amounts was 54%, which indicates an active contribution 
of both rainfall and irrigation amounts toward attenuating 
the water stress conditions in 2017 at stations 1.1 and 1.2.

Crop water stress index model assessment

The estimated CWSI based on modeled or estimated sur-
face heat fluxes  (CWSIE), when evaluated with  CWSIsap, 
provided an MBE of 0.02 and an RMSE of 0.06, with corre-
sponding NMBE of 8.7% and CV RMSE of 29.1% (Table 6). 

Overall is a small mean error with a somewhat larger error 
spread. However, most of the spread in the errors (around 
mean values) come from one overestimated CWSI value on 
09/03/17 of 133.9%. This value was not flagged as an out-
lier because it is within three standard deviations of mean 
values. Furthermore, some discrepancy between CWSI 
obtained with the proposed (H) method and that of the sap 
flow measurements is expected due to sampling area differ-
ences (larger area integrated by temperature measurements 
vs. individual plants, respectively). When the analysis was 
done comparing  CWSIE with  CWSISEB, MBE was − 0.02, 
and RMSE was 0.09, with corresponding NMBE of − 4.2% 
and CV RMSE of 19.5% (Table 6). The footprint (heat flux 
area contribution) for the Bowen ratio method was some-
what larger than that for the proposed “H” method due to 
the location of the measuring stations/sensor. However, this 
comparison is more appropriate (than that for the Sap flow 
derived CWSI) because both methods are sampling (inte-
grating) areas (instead of point measurements). The result-
ing error, for this comparison, is considered acceptable. The 

Table 6  Summary of CWSI 
model performance regarding 
independent CWSI data for 
deficit irrigated field at LIRF in 
2017–2018

Independent CWSI MBE NMBE (%) RMSE CV RMSE (%) Sample 
size (n)

Dr Pearson’s r

Equation (3) using 
canopy transpira-
tion data (sapflow)

0.02 8.7 0.06 29.1 25 0.75 0.87

Equation (7) using 
measured surface 
heat fluxes

− 0.02 − 4.2 0.09 19.5 71 0.71 0.88

Fig. 5  Observed CWSI vs. estimated CWSI for 2017–2018 data.  a Represents the plot regarding observed CWSI determined through transpira-
tion measurements.  b Shows the plot regarding observed CWSI determined through measured surface heat fluxes (Rn, G, H)
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refined index of agreement for both CWSI model perfor-
mances was higher than 0.70, which indicates satisfactory 
agreement between estimated and observed CWSI values 
based on the samples analyzed. Pearson’s correlation coef-
ficient r was 0.87 and 0.88 for the comparison of  CWSIE to 
 CWSIsap and  CWSISEB, respectively. Evans (1996) suggests 
that Pearson’s r values greater than 0.80 must indicate a 
strong correlation between variables.

The proposed model for CWSI seems to provide a sta-
tistical analysis that results in small RMSE for both inde-
pendently observed CWSI datasets. Overestimation or 
underestimation of conditions may occur depending on the 
nature of the derivation of observed CWSI. For the case 
when estimated CWSI is compared to observed CWSI based 
on canopy transpiration data, overestimation seems to occur. 
Underestimation of CWSI is evident when estimated val-
ues of CWSI are compared to observed CWSI data from 
measured Rn, G, and Bowen ratio H. The underestimation 
and overestimation of estimated values for CWSI might be 
explained based on limitations on the models for Rn, G, and 
H to capture all magnitude of their respective measured val-
ues (Fig. 5).

On average, the estimated values for CWSI were 4% 
smaller than observed CWSI based on measured Rn, G, and 
Bowen ratio H. If 2017 and 2018 data are analyzed sepa-
rately, modeled CWSI was 8% and 2% smaller than CWSI 
from measured heat fluxes, respectively. When estimated 
CWSI is compared to observed CWSI based on biomass 
transpiration (sap flow), modeled values for CWSI were 10% 
greater than observed values, on average.

Estimated  CWSIE and SWSI relationship

The SWSI model based on Eq. (42) presents a strong sta-
tistical evidence that the fitted coefficients c1 and c2 are 
representative of characterizing the non-linear relation-
ship between daily SWSI and estimated CWSI because 
the respective p values are less than 0.05 (Table 7). The 

modeling for SWSI based on Eqs. (43) and (44) did not have 
all fitted coefficient estimation with significant statistical evi-
dence. For the SWSI model based on the rational function 
approach, all p values were greater than 0.05. Regarding the 
SWSI model based on Eq. (44), only the fitted coefficient  c9 
did not provide a good statistical evidence. The degrees of 
freedom might be a factor that is not allowing SWSI models 
based on Eqs. (43) and (44) to have all proper coefficient 
estimations with enough evidence to validate the relation-
ship between SWSI and estimated CWSI.

From Fig. 6, the curve fitting models gradually follow up 
the trend of data points. SWSI and CWSI are related to the 
concept of water stress, which is based on the depletion of 
water from the root zone. As the water in the soil reaches 
levels below the defined  VWCt over time for a given MAD, 
the magnitude of SWSI and CWSI tends to increase, with 
the exception when a recharge event (e.g., rainfall or irriga-
tion) occurs. All SWSI models plotted in Fig. 6 seem to 
fit the data well up to a specific range of CWSI. However, 
the curve fitting upper and lower tails have different charac-
teristics. For the Fig. 6a and c, regarding the SWSI model 
used, Eqs. (42) and (44), respectively, there is an offset of 
the curve on the lower tail when CWSI is/tends to zero. 
This result means that the models based on the Weibull and 
sum of sine indicate that there might be SWSI conditions 
even when crop water stress could be assumed negligible 
or zero. This result can occur when advection occurs with 
strong winds. Equation (43) for estimating SWSI based on 
the rational function seems to adjust better to the condition 
when CWSI and SWSI are zero (no or minimal soil water 
stress).

The upper tail also has differences among all SWSI mod-
els analyzed. Weibull function model indicated by Fig. 6a 
seems to keep the trend of increasing estimation of SWSI as 
CWSI continues to increase. The SWSI curve fitting based 
on Eqs. (43) and (44) does not have the same behavior. Fig-
ure 6b seems to reach a constant level of soil water stress 
for when CWSI values are equal or greater than 0.70, which 

Table 7  Non-linear regression statistics regarding models for SWSI based on estimated CWSI

SWSI model Number of 
observations

Degrees of 
freedom

Fitted coef-
ficient

Estimate Standard error Test-statistic P value

Weibull function (Eq. 42) 39 37 c1 0.46307 0.01443 32.095 1.2943e− 28
c2 1.80940 0.05341 33.878 1.8686e− 29

Rational function (Eq. 43) 39 35 c3 0.77008 0.57028 1.350 0.1856
c4 − 0.00849 0.03445 − 0.246 0.8068
c5 − 0.02234 0.84006 − 0.027 0.9789
c6 0.63463 0.23324 2.721 0.0101

Sum of sine (Eq. 44) 39 36 c7 − 0.49153 0.01622 − 30.307 3.2078e− 27
c8 − 2.15270 0.16602 − 12.966 3.9441e− 15
c9 − 0.01345 0.04220 − 0.319 0.7518
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agrees with the concept of water depletion based on SWSI 
developed by Chávez (2015). It might be assumed that for 
levels of soil water depletion that surpasses the critical VWC 
for the imminence of stress, the values of  VWCa will not 
change significantly over time if wetting events do not occur. 
Therefore, SWSI values tend to remain constant later in the 
season. For SWSI based on the sum of the sine approach, 
Fig. 6c shows that when CWSI is greater than 0.70, the 
respective curve starts to decline. High values of CWSI 
might occur by the end of the growing season when the 
plants are not biologically active, and transpiration and evap-
oration are very limited due to plant physiology and water 
availability in the root zone, under dry weather conditions.

Fitted curves (models) present two different CWSI val-
ues for the same SWSI levels for values between of CWSI 
between 0.5 and 0.9 (e.g., for fitting model based on the sum 
of sine function, Fig. 6c). It is not feasible that for a larger 
CWSI level, there would be less SWSI. Thus, it is appropri-
ate to conclude that there is a larger uncertainty on CWSI 
and SWSI values estimated and calculated for large soil 
water deficits and crop water stress levels and that the mod-
els, especially the SWSI model based on Eq. (42) (Fig. 6b), 
should be limited to CWSI values of to 0.7. It seems the 

model based on the rational function characterizes the physi-
cal system better than the other two models analyzed.

Conclusions

The study indicates that there exists statistical evidence 
showing that the proposed estimation of CWSI based on 
the relationship between sensible heat flux and available 
energy performs well. The approach seems to be an alterna-
tive method, and it may facilitate the incorporation of remote 
sensing approaches to scale CWSI to large fields and irri-
gation districts to improve irrigation scheduling and con-
serve water resources. The CWSI models applied resulted 
in relatively small MBE and RMSE values and high corre-
lation coefficients between observed and estimated values. 
This result indicates that the sensible heat flux modeling 
approaches based on the surface aerodynamic temperature 
could be useful for predicting the stress level of row crops 
based on the relationship between H and (Rn – G). It seems 
that the approach developed for estimating sensible heat flux, 
based on aerodynamic surface temperature, has the capabil-
ity to indicate the stress conditions of the canopy. The small 
average available energy and Bowen ratio-derived sensible 

Fig. 6  Estimated CWSI vs. Daily SWSI at deficit irrigated plots at LIRF regarding 2017–2018 data.  a–c Show, respectively, the empirical mod-
els based on Eqs. (42), (43), and (44)
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heat flux uncertainties of (400.7 W/m2) ± 8.5 W/m2 and 
(160.7 W/m2) ± 6.6 W/m2, respectively, suggest the potential 
applicability of the evaluated CWSI model.

Differences in soil texture across a given field are sources 
of variability when determining SWSI and CWSI based on 
the energy balance approach due to the water holding capac-
ity and soil-specific area differences. When treating the area 
of interest as a lumped system (point in space), the variations 
in texture are neglected and bias is introduced on the assess-
ment of the models due to the input variables being not able 
to accommodate the heterogeneity of the soil. Assessing 
SWSI based on estimated CWSI from the energy balance 
approach investigated in this paper seems to be applicable. 
The models based on Weibull, rational, and sum of sine 
functions seem to behave similarly for a specific range of 
CWSI. The non-linear relationship, between SWSI and 
CWSI, is better characterized by the empirical model indi-
cated by Eq. (43); which is based on a rational polynomial 
function. There is strong statistical evidence that SWSI and 
CWSI are statistically related through a non-linear approach 
and that estimates of CWSI might be valuable information to 
assess soil water stress levels throughout the crop root zone.
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