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Abstract: The saline groundwater irrigation is an important problem in the arid and semiarid region because it can cause soil salinization and
reduce crop productivity. The accurate spatial distribution of groundwater salinity can be helpful to managers and decision makers. In this
study, the mapping of salinity risk through groundwater electrical conductivity (EC) irrigation was performed based on data collected from 88
wells in the Lower-Cheliff plain (Algeria). The EC data showed a normal distribution based on elementary statistics. The EC classified using
Riverside method point out a high risk of groundwater salinity (Class C3) or very high risk (Class C4) for soil salinization. The EC estimated
by ordinary kriging method (OK) revealed on one hand, an underprediction of a high value, on the other hand, an overprediction of low value.
The methodology of nonparametric and nonlinear of indicator kriging (IK) was performed by three thresholds: EC > 2.25, EC > 3, and
EC > 5 dS=m. The map has been obtained from the combination of the local conditional cumulative distribution function (CCDF). The
interpolated map by IK indicates the same overall spatial distribution of salinity with the one obtained by OK, enlightening differences in the
shape and size of the area. The comparison between the groundwater EC estimated by OK and the one using IK demonstrates that IK has a
better spatial prediction of salinity in terms of area and uncertainty. The groundwater salinity map was improved and accurately predicted by
IK interpolation method. DOI: 10.1061/(ASCE)IR.1943-4774.0001019. © 2016 American Society of Civil Engineers.
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Introduction

Water scarcity and groundwater salinity are major constrains for
the agricultural production of the semiarid region of the Lower-
Cheliff plain (northwestern Algeria). The groundwater supply is
the primary water resource for irrigation in the area (Bouarfa et al.
2009; Bradaï et al. 2012). However, irrigation using saline ground-
water can alter soil proprieties, causing salinization and reducing
crop productivity (Ramsis et al. 1999). The use of groundwater re-
sources has dramatically increased during the last decades (Amichi
et al. 2012), leading to a continuous salinization process of the top-
soil (Douaoui et al. 2006; Douaoui and Lepinard 2010). Therefore,
an accurate mapping of groundwater salinity in an aquifer is very
important to managing the irrigation in the area.

The control and the management of groundwater irrigation
(aquifer salinity and pollution risk) is essential through the

application of legitimate digital methods (Goovaerts et al. 2005;
Assaf and Saadeh 2009; Mendes and Ribeiro 2010). In this study,
the applied methods gave rise to results in the form of digital maps
to facilitate their interpretation. These maps need to be adjusted
with the right spatial analysis, to ensure an accurate digital mapping
of groundwater quality.

The adopted digital mapping is based on kriging, which is a
geostatistical interpolation technique that deals with many varia-
tions, including simple kriging (SK), ordinary kriging (OK),
cokriging (CK), and nonlinear kriging (NK). Among those, ordi-
nary kriging (OK) is frequently the most used (Douaoui et al. 2006;
Hooshmand et al. 2011). Now, there are many examples of OK to
estimate groundwater salinity variables at nonsampled sites from
data of adjacent sample points (Theodossiou and Latinopoulos
2007; Yimit et al. 2011; Hooshmand et al. 2011). However, the
linear prediction methods, i.e., OK, do not contribute truly as an
effective solution, because the krigged values Z�ðx0Þ are affected
by smoothing effect, as consequence of prediction errors (Deutsch
and Journel 1998; Lloyd and Atkinson 2001; Chica-Olmo et al.
2014). Consequently, the expected results regarding the determina-
tion Z�ðx0Þ > Zc, by applying a limit value Zc to the krigged values
Z�ðx0Þ, could be biased. This bias depends on the value of Zc.

Facing this situation, the prediction of a local conditional cumu-
lative distribution function (CCDF), of Z�ðx0Þ > Zc=ZðxiÞ,
i ¼ 1; : : : ; n, is a better solution instead of estimating the most
likely value at an unsampled location by linear kriging x0
(Chica-Olmo et al. 2014). This function allows us to estimate
the spatial probability when the value Z�ðx0Þ exceeds a threshold
value Zc at an unsampled location conditional to the experimental
field information x0, ZðxiÞ, i ¼ 1; : : : ; n. It is a nonlinear predic-
tion problem. A geostatistical application is the solution through
the use of nonparametric methods such as indicator kriging (IK)
(Triantafilis et al. 2004; Adhikary et al. 2011; Antunes and
Albuquerque 2013). In recent studies, IK is used to analyze the
spatial variability of groundwater salinity; whereas Kuisi et al.
(2009) used OK in addition to IK for the same purpose in the
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Amman-Zarqa Basin, and Dash et al. (2010) applied it for ground-
water depth and quality parameters in Delhi. Also, Arslan (2012)
used OK and IK to analyze the spatial and temporal groundwater
salinity in Bafra plain (Turkey).

All those studies applied the IK method to estimate the likeli-
hoods for the variables that exceeded a specified value (threshold)
(Demir et al. 2008). This paper presents the application of the IK
method in the spatial prediction of a categorical variable (Journel
1983, 1986; Solow 1993; Walter 1993; Goovaerts and Journel
1995), related to the groundwater salinity. The purpose of this paper
on one hand, is to combine the estimated values of different salinity
classes; obtaining a discrete version of the CCDF which represents
the expected value of the rank of the electrical conductivity (EC)
threshold at a sampled point, and then, to improve the prediction
accuracy of groundwater salinity that is potentially used for irriga-
tion in the Lower-Cheliff plain, both linear and nonlinear interpo-
lation were used, the efficiency of both methods was assessed, and
the best one was determined.

Materials and Methods

Study Area

The Lower-Cheliff plain is one of the regions most affected by soil
salinity in Algeria. It extends over 60,000 ha of area, including
40,000 ha of irrigation schemes around the localities of Ouarizane,

Djdiouia, Hmadna, and Guerouaou. It is located in the northwest
of Algeria (0°40′ and 01°06′08″ E and latitudes 34°03′12″ and
36°05′57″ N) (Fig. 1). The specific semiarid climate of the Lower-
Cheliff comes with very hot summers and cold winters, and also
moderate rainfalls and evaporation intensities of 250 and 1,939 mm=
year, respectively (Hartani et al. 2012). According to Douaoui et al.
(2001), the soils are limey with clayey texture. Yahiaoui et al. (2015),
have revealed the soils salinization can go back to the saliferous for-
mation of Trias and Miocene, and the salinization phenomena has
been accelerated in the last two decades following the increased uti-
lization of groundwater irrigation. Crops patterns in the study area
vary considerably: artichoke, melon, olive, pomegranate, and citrus
trees cropped during irrigation period; barley and wheat are also
cropped during the rainy season.

Historically, the small basin called Merdjet Sidi Abed and the
Gargar dam were the only water supplies for irrigation in the area.
Hence, the long dryness periods have significantly influenced these
resources and an alternative was more needed than before. As the
area lies on an important potential of groundwater resource
(Bouarfa et al. 2009), wells canals were introduced by farmers
and new volumes were available for cropping practices. As a result,
groundwater irrigation became the main water supply in the Lower-
Cheliff. However, Bradaï et al. (2012) have assessed that “these
waters have normally high salinity and are unusable for irrigation”
concluding that “they carry a great danger of salinization.” The
used irrigation system is mainly based on border-and-furrow
methods.

Fig. 1. Main irrigation scheme in the Lower-Cheliff plain
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Groundwater Samples Collection

The groundwater resources are originally coming from three main
aquifers in the study area (Bradaï et al. 2012) (Fig. 2): (1) the
Miocene aquifer, which extends along the southern boundary of
the plain consisting of sandstone and limestone of Lithotamnium;
(2) the Marine Pliocene aquifer which is a sequence of clays and
marls with thin layers of sandstone exposed in the northern plain;
and (3) the Quaternary Pliocene continental aquifer composed of
sediments consisting of clay-based marl and beds of sand, gravel,
and conglomerates. It is considered the most important aquifer and
it is located in the center of the plain.

Groundwater samples were collected using a GPS device during
May and June 2009 from 88 wells distributed along the area
(Fig. 2). The wells’ depths are between 60 and 120 m. All the sam-
pling wells are usually used in irrigation by farmers and come from
the Quaternary Pliocene continental aquifer. Then, the EC is mea-
sured in dS=m for all the collected samples using handy devices on
the field [WTW 350i (Wissenschaftlich-Technische Werkstätten,
Weilheim, Germany), �0.5% of precision].

Table 1 provides a summary of groundwater salinity statistics.
The groundwater EC varies between 1.2 and 7.03 dS=m, with a
mean value of 3.34 dS=m. The variance is 2.34 and a standard
deviation of 1.56 dS=m, explaining the spatial heterogeneity of
the used data [Fig. 4(a)].

Assessment of the Groundwater Salinity Used for
Irrigation

According to Richards (1954), the measured EC values gave rise
to a classification of the water salinity used for irrigation: (C1)
low salinity (0–0,250 dS=m), can be used in most crops and soil
types with a low hazard of salinization; (C2) medium salinity

(0,250–0,750 dS=m), can be used moderately for crops that are
moderately salt tolerant; (C3) high salinity (0,750–2,250 dS=m),
cannot be used in areas with drainage deficiency, pushing to select
crops that are considerably tolerant to salts even under good drain-
age conditions; (C4) very high salinity (2,250–5 dS=m), not appro-
priate for irrigation of common crops but can be used for a previous
selection of crops in highly permeable, well-drained soils; and (C5)
unusable water for irrigation (EC > 5 dS=m). In addition, Ayers
and Wescot (1988), had recommended a 3 dS=m threshold after
many experiments on crops, as an acceptable maximum for the
majority of the crops.

Geostatistical Analysis

Geostatistics involves the study of spatially correlated data used in
geosciences. Spatial correlation is present in all natural phenomena.
In earth sciences, samples taken at close distances to one another

Fig. 2. Distribution of the collected samples and the main aquifers in the study area

Table 1. Statistical Analysis of the Groundwater Salinity

Statistical parameters EC (dS=m)

Number of samples 88
Mean 3.34
Minimum 1.2
Maximum 7.03
SD 1.56
Variance 2.43
Coefficient of variation (%) 46.59
Skewness 0.55
Kurtosis −0.7
Kolmogorov-Smirnov statistic 0.152
Kolmogorov-Smirnov significance 0

© ASCE 04016023-3 J. Irrig. Drain Eng.
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tend to be more similar compared to samples taken from far located
points. The geostatistical kriging technique allows the spatial cor-
relations between samples to determine an average value at an un-
sampled location (Kasmaee et al. 2010). Geostatistical analysis
consists of variography and kriging.

Variography

The main tool in geostatistics is the variogram, it expresses the
spatial dependence between neighboring observations (Webster
and Oliver 2001). The variogram (ɣh) can be defined as the semi-
variance of the difference between the attribute values for all
separated points by h distance as follows:

γh ¼
1

2NðhÞ
XNðhÞ

i¼1

½ZðxiÞ − Zðxi þ hÞ�2 ð1Þ

where (ɣh) = estimated or experimental semivariance value for all
pairs at a lag distance h; ZðxiÞ = groundwater EC value per point i;
Zðxi þ hÞ = groundwater EC value (dS/m) for other separated
points from xi by a discrete distance h; xi = georeferenced positions
where the ZðxiÞ values were measured; and NðhÞ represents the
number of observation pairs for separated points by the distance
h (Delhomme 1978).

The fitting of a theoretical semivariogram (curve) is an impor-
tant step in the analysis. Hereby, the sill is the total variance σ2 of
the variable, the range is the maximal spatial extent of the spatial
correlation between the observed variables, and the nugget is the
random error. It can be also composed of nested models or struc-
tures, which commonly include nugget, spherical, exponential,
Gaussian, and power models (Verfaillie et al. 2006).

The VARIOWIN software v2.2 (Pannatier 1996) was used to
make the variogram and indicate the goodness of fit (IGF). The
IGF is the number of standardization without units; it indicates
a good fit when it is close to zero (Pannatier 1996).

Kriging

Kriging is a form of weighted average estimator. The weights are
assigned on the basis of a model that fits a function, as the semi-
variogram represents the spatial structure in the searched variable
(Lloyd and Atkinson 2001). However, kriging was proven as a
powerful interpolation technique, it is recognized in many study
fields and related disciplines such as: hydrogeology, hydrology,
soil sciences, and mining sciences. (Akin and Siemes 1988).
Various methods for kriging exist in geostatistics, among those
the researchers applied both OK and IK.

Ordinary Kriging

The algorithm for OK uses a weighted linear combination of
sampled points commonly situated inside a neighborhood around
the location x0

Z�ðx0Þ ¼
Xn
i¼1

λiZðxiÞ ð2Þ

and

Xn
i¼1

λi ¼ 1 ð3Þ

where Z�ðx0Þ = estimated value by a location x0; ZðxiÞ = available
sample per location xi, and λi is the weight assigned to the sample
value; and n = number of considered samples in the prediction.

To solve the equations induced by the search λi weight system,
it is necessary to introduce the optimizing conditions (Delhomme
1978; Kumar 2007) of unbiasedness

E½Z�ðx0Þ − Zðx0Þ� ¼ 0 ð4Þ
and minimum variance

Var½Z�ðx0Þ − Zðx0Þ� ¼ 0 ð5Þ

Indicator Kriging

The indicator kriging, initiated by Journel (1983), was then devel-
oped mathematically (Davis 1984; Cressie 1991; Bierkens and
Burrough 1993). The basis of IK is to perform a spatial analysis,
not directly from the targeted property, but through different func-
tions from a binary coding as an indication to this property. The
spatial variable interpolation method in IK, ZðxiÞ, is transformed
into an indicator variable with a binary distribution as follows:

Iðxi;ZcÞ ¼
�
1 if ZðxiÞ ≥ Zc

0 if ZðxiÞ < Zc

i ¼ 1; : : : ; n ð6Þ

where I (xi;Zc) = indicator value at a location xi; ZðxiÞ = measured
value at a location xi; and Zc = threshold. The expected value of I
(xi; Zc), conditional on n surrounding data, can be expressed as

E½Iðxi;ZcÞ� ¼ Prob½ZðxÞ ≤ Zc� ¼ Fðxi;ZcÞ ð7Þ
where F (xi; Zc) = conditional cumulative distribution func-
tion (CCDF).

The function F represents the probability for an unknown
value not exceeding a threshold Zc. The CCDFs are modeled using
a nonparametric (IK) approach (Eldeiry and Garcia 2011).

The interpolation can be performed using IK method in
four steps:
1. The transformation of measured values in binary code (0-1)

according to selected threshold value (Zc) as in Eq. (5).
2. The calculation of the variogram for the conditional cumulative

distribution function at a given threshold determines the spatial
structure

γ�ðh;ZcÞ ¼
1

2NðhÞ
Xn
i¼1

½ðxi;ZcÞ − ðxi þ h;ZcÞ�2 ð8Þ

3. After adjustment of the CCDFs variogram to a theoretical mod-
el, by applying the linear kriging in to a point (x0) for Iðxi;ZcÞ
using the equation

I � ðx0;ZcÞ ¼
Xn
i¼1

λiðxi;ZcÞ ð9Þ

where n = number of the experimental points considered in
the prediction; and i ¼ weight attributed to the experimental
points.

This applied formula gives values from 0 to 1 through pre-
diction at a given point of the probability, where the Zi value is
equal or less than the chosen threshold Zc. The combination of
these predictions, leads to the ability of having at each point,
the probability where the variable is equal to the determined
threshold value.

4. The last step consists of the prediction of the value Zðx0Þ for the
Z property at a random point x0, considering, its density func-
tion. This can be done through the calculation of the mathema-
tical expectation of the property value following the procedure:

© ASCE 04016023-4 J. Irrig. Drain Eng.
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a. The difference between the predictions of CCDF for two fol-
lowed threshold values allows determining the probability for
each point. The realization of a discrete random variable
named X, like the thresholds have been calculated at higher
values, the calculation can be

Probabilityðx ¼ ZcÞ ¼ Probabilityðx ≥ ZcÞ
−Probabilityðx ≥ Zcþ1Þ ð10Þ

where Zc and Zcþ1 are the two followed threshold values.
b. The combination of the thresholds values correspondent to

different classes, obtains a discrete version of the repartition
function that represents the mathematical expectation at the
threshold level for the variable of a sampled point. The math-
ematical expectation is calculated using the formula

EðZÞ ¼ Zc þ 2Zcþ1 þ 3Zcþ2 þ 4Zcþ3 þ 5Zcþ4 ð11Þ

Validation

This modeling was performed using 13 samples randomly ex-
tracted from the 88 total (15% from the sampling rate) (Fig. 3)
to provide an accurate prediction. The standardized mean error
(ME) should be close to 0 and the root-mean square error (RMSE)
should be close to 1 (Arslan 2012). Mean error and root-mean
square error were estimated using the following formulas:

ME ¼ 1

nv

Xnv
i¼1

Z�ðxiÞ − ZðxiÞ ð12Þ

RMSE ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
½Z�ðxiÞ − ZðxiÞ

nv

r
ð13Þ

where Z�ðxiÞ = predicted value; ZðxiÞ = measured value; and nv =
number of validation points.

Results and Discussion

Data Distribution

The kriging method works better on data with a normal distribution
(Arslan 2012). No prior assumption is needed for IK about the
distribution function for the studied variables (Walter 1993). The
authors checked the distribution normality of the EC data using
the Kolmogorov-Smirnov test. The asymmetry and the kurtosis val-
ues were close to zero with 0.55 and −0.70 respectively, which
validate the normal distribution of the used data [Fig. 4(b)]. The
statistic value of Kolmogorov-Smirnov test was highly significant
with 0.152 (Table 1).

The frequency distribution of the groundwater EC (Table 2)
shows that the Class C4 (very high risk) is dominant with 42 sam-
ples (47.7%). The Class C3 (high risk) represents 34.1% of sam-
ples. The Class C5, unusable water in irrigation, represents 18.2%.
The Classes C1 and C2 (low and medium risk) are nonexistent
in groundwater irrigation of Lower-Cheliff. However, more than
half of the analyzed wells (51.1%) have a higher EC > 3 dS=m
which is the maximum allowed level for most crops (Ayers and
Wescot 1988). The use of groundwater that is potentially saline
for irrigation in the study area can seriously damage the soil and
the crops’ yield.

Ordinary Kriging

The experimental omnidirectional variogram of the groundwater
irrigation EC [Fig. 5(a)] indicates that the spherical variogram
model better suited the groundwater EC. The nugget effect (C0)
was 1.199 ðdS=mÞ2, the sill (C0 þ C) was 2.74ðdS=mÞ2, and the
range was 3,870 m. The spatial dependence of groundwater salinity
can be classified according to nugget-to-sill ratio (%), with a ratio
of <25% referring to a strong spatial dependence, a ratio of 25–75%
indicating a moderate spatial dependence, and a ratio of >75%
for a weak spatial dependence (Cambardella et al. 1994). The value
for nugget-to-sill ratios was 49.3% in the present study, indicating
the groundwater salinity has a moderate spatial dependence. The
high value of the range indicates a spatial continuity of ground-
water EC.

Fig. 3. Distribution of the selected points for validation

© ASCE 04016023-5 J. Irrig. Drain Eng.
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The groundwater irrigation has a high salinity risk. On one hand,
the water with salinity between 3 and 5 dS=m is dominant in par-
ticular in the south- and north-east of the study area. On the other
hand, the northwestern of the study area has a lower EC than
3 dS=m. The least salted water (EC < 2.25 dS=m) is localized in
the center near the Cheliff Stream [Fig. 5(b)]. The water with very
high risk (EC > 5 dS=m) is located at the southwestern and a little
to the north of the area.

Indicator Kriging

Three thresholds were selected: 2.25, 3, and 5 dS=m. The first one
is the higher limit of the Class 3 of USDA classification, in which
exists the best class from the analyzed groundwater irrigation. The
second threshold is the acceptable maximum threshold for the ma-
jority of the irrigated plants. The last one defines the threshold for
unusable water in irrigation. From these three thresholds, four EC
classes were retained: EC < 2.25, 2.25 < EC < 3, 3 < EC < 5,
and EC > 5 dS=m.

These two models (Table 3) were selected as the best fits for dif-
ferent thresholds. The EC > 3 dS=m and EC > 5 dS=m were ad-
justed to fit the exponential model and EC > 2.25 was adjusted
to fit the spherical model. The EC > 3 dS=m function had the big-
gest rangewith 4,940mand the biggest nugget effect 0.066ðdS=mÞ2.
Moreover, the EC > 2.25 dS=m from the CCDF had the smaller
range (2,469 m) and nugget effect [0.045ðdS=mÞ2]. The value for
nugget-to-sill ratios for the three variograms indicates that EC >
2.25 and EC > 3 dS=m thresholds have a strong spatial dependence
whereas the EC > 5 dS=m had a moderate one.

The results of the three EC thresholds enlighten us about the
probability maps in Fig. 6. The study area has four classes of prob-
ability for the groundwater EC thresholds values. The comparison
of the three maps is mainly based on the obtained surface area for
each probability class (Table 4). The probability is accepted of 50%
as a significance level, almost 80% of the studied area exceeds the

threshold of 2.25 dS=m, giving a 61% of area with a very high
probability (P > 75%). The 50/50 risk of exceeding a groundwater
EC of 3 dS=m is 43% in the study area. It is localized to the south
of the area where almost 20% exceeds the 5 dS=m threshold.

The theoretical variogram was calculated using the value of the
mathematical expectation for the groundwater EC [Eq. (10)]. The
variogram was adjusted to fit the exponential model [Fig. 7(a)],
the nugget effect was 0.091ðdS=mÞ2, the sill was 0.782 ðdS=mÞ2,
and the range was 4,000 m with high spatial continuity. The nug-
get-to-sill ratio was 12.5% signifying strong spatial dependence
of the value.

The obtained map of EC using IK [Fig. 7(b)] shows the same
overall spatial distribution of salinity with the one obtained with
OK, only this time the differences are mostly in the shape and size
of the area.

Comparison between Ordinary and Indicator Kriging

Kriging is an optimal spatial regression technique that requires a
spatial statistical model, popularly known as a semivariogram, rep-
resenting the internal spatial structure of the data. It is known as
the best linear unbiased estimator (BLUE). Ordinary kriging,
one of the most common geospatial interpolation methods, is
compared to IK in this study.

The performance of variography according to nugget-to-sill ra-
tio (%) shows that the CCDFs were better than the indicator classes
in presenting a good spatial structuring. Then, the nugget-to-sill
ratio (%) of the mathematical expectation is very low compared
to the variogram of OK. This result explains the good spatial cor-
relation of the mathematical expectation for the groundwater.

The scatter plot of the measured groundwater EC and the esti-
mated residue values (Fig. 8) using OK reveals an underestimation
of the higher EC value and an overprediction of the lower value of
groundwater EC. This underestimation is for an EC value equal to
3 dS=m. According to Douaoui et al. (2006), there is a sort of pre-
diction problem using OK, in particular with the high values which
are often underestimated.

The class of EC < 2.25 dS=m (low values) dropped from 5.81%
with OK to 1.55% with IK (Table 5). This class was overestimated
by OK. The second one, 2.25 < EC < 3 dS=m, increased with al-
most 4% for IK; going from 34.55% with OK to 38.05% using IK.

Fig. 4. (a) Frequency plot of the groundwater EC values; (b) scatter plot of the groundwater EC normal distribution

Table 2. Frequency Classification of the Groundwater Salinity

Class C1 C2 C3 C4 C5 EC > 3 dS=m

N 0 0 30 42 16 45
Percentage 0 0 34.1 47.7 18.2 51.1
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This confirms the underestimation of the class estimated using OK
method. The high class of EC (EC > 5 dS=m) increased almost
twice using IK method (Table 5). The estimated surface area using
OK was 7.26% and the one with IK was 12.89%. This class was
underestimated by OK.

The spatial distribution of groundwater EC classes obtained
using IK defines areas where the EC is very high, which are
also similar to those obtained by OK but with more details. An
important range representing the high EC classes using IK

(EC > 5 dS=m) (Table 5) is clearly observed in the north and
south of the study area unlike the classes from OK. Meanwhile,
the OK prediction revealed remarkable underprediction for the high
values classes presenting a big hazard. The high surface retained
using IK for the EC values under 5 dS=m, leads to compare this
result to the OK one, the authors found that the underpredictions
for this type of kriging (IK) are less important, giving a good
precision quality that IK offers in the prediction of groundwater
salinity hazard.

Fig. 5. (a) Omnidirectional variogram of the predicted EC; (b) prediction map of groundwater EC using OK

Table 3. Parameters of the Variogram Models of EC Thresholds (IK)

Thresholds Model Range (m) Sill (C0 þ C) ðdS=mÞ2 Nugget effect ðdS=mÞ2 Nugget ratio (%) IGF

EC > 2.25 Spherical 2,469 0.223 0.045 20.18 1.96 × 10−4
EC > 3 Exponential 4,940 0.264 0.066 24.99 1.78 × 10−3
EC > 5 Exponential 3,060 0.181 0.054 29.83 3.60 × 10−3
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Fig. 6. Probability map of groundwater salinity spatial distribution with (a) EC > 2.25 dS=m; (b) EC > 3 dS=m; (c) EC > 5 dS=m
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The comparison of the two estimated maps by OK and IK shows
that they have the same general structure, but the IK map shows a
better smooth reappearance. Thus, for a sample initially identical,
both methods lead to different prediction maps.

The cross-validation statistic shows how groundwater EC can be
significantly estimated using the IK method more than using OK.
Indeed, the mean error (ME) and the root-mean square error
(RMSE) calculated for the two types of kriging give advantage
to the IK (Table 6).

The final maps show that 60% of the aquifer’s surface presents
water of poor quality for irrigation (EC > 3 dS=m). The indicator
kriging map shows a clear precision in the prediction of higher
classes in groundwater salinity.

From the manager’s perspectives, these results have important
implications on the Lower-Cheliff plain’s environmental and agri-
culture sustainability, while these water resources are used poten-
tially for irrigation. Therefore, long-term use poses a potential risk
for soil salinization and crops’ productivity. First, the situation of
the irrigated areas is assessed in the semiarid region of the Lower-
Cheliff and the coming danger(s). Second, an accurate prediction
of the groundwater salinity high classes is performed using the IK
method. The accurately obtained spatial distribution with IK
method can be a basis for developing a strategy to protect the crop-
ping systems such as: drainage network, leaching dose, and crop
tolerance to water salinity, against soil salinization.

The presented methodology based to IK interpolation is robust
and could be applied to the risk analysis studies, where the spatial
probability will be necessary for the evaluation of the potential ef-
fect on the environment, and then, the accuracy of the high value

Table 4. Ranges of Probabilities of the Areas Exceeding the EC
Thresholds

Probabilities (%)

Area (%)

EC > 2.25 dS=m EC > 3 dS=m EC > 5 dS=m

P < 25 6.4 23.3 74.6
25 < P < 50 14 33.9 5.1
50 < P < 75 18.6 25 3.3
75 < P < 100 61 17.8 17

Fig. 7. (a) Variogram of the mathematical expectation; (b) prediction map of groundwater EC using IK
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generally underestimating by the most spatial interpolated method
used (OK).

Conclusion

The application of a robust interpolation method is important for
the spatial analysis of groundwater salinity that is potentially used
in irrigation. In this paper, the authors used an efficient approach for
the prediction of groundwater salinity in the Lower-Chleff plain
(Algeria) based on the IK methodology. This geostatistical method
provides accuracy in the spatial distribution of groundwater salinity
by estimating the probability of exceeding a threshold value. The
combination of the CCDFs provides a good prediction of the EC
high values and gave an accurate map for the high classes.

The variographic analysis shows that the indicator classes
present a good spatial structuring. The spatial pattern of the EC
groundwater in the plain of Lower-Cheliff revealed an advanced
state of salinity risk using groundwater irrigation. Thus, using
the OK estimated map shows 2% of the total surface in the region
has salinity below 2.25 dS=m, whereas nearly 60% of this area
has an EC higher than 3 dS=m. The use of IK has improved the

mapping of groundwater salinity risk in the Lower-Cheliff with
a better assessment of the areas through an optimization of the
extreme values prediction (the problem of underestimation), and
better precision by reducing the uncertainty. IK can be applied
to generate estimation maps for irrigated zones with expected
potential crops yield in the study area.
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