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• Calibrated apparent electrical conduc-
tivity (ECa) can be used to estimate soil
salinity.

• A t-ANOCOVA calibration was used to
monitor salinity using limited soil sam-
pling.

• The t-ANOCOVA calibration was com-
pared to established ECa calibration ap-
proaches.

• The t-ANOCOVA calibration was reli-
able, especially at low salinity values.
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Monitoring soil salinity (ECe) is important for planning and implementing agronomic and irrigation practices. Salin-
ity can bemeasured through soil sampling directed by geospatial measurements of apparent soil electrical conduc-
tivity (ECa). Using data from a long-term (1999–2012) monitoring study at a 32.4-ha saline field located in
California, USA, two established field-scale approaches to map and monitor soil salinity using ECa are reviewed:
one that relies on a single ECa survey to identify locations that can be repeatedly sampled to infer the frequency dis-
tribution of ECe; and another based on repeated ECa surveys that are calibrated, each time, to ECe estimation using
ground-truth data from soil samples. The reviewed approaches are very accurate and reliable, but require extensive
soil sampling. Subsequently, we propose a novel approach – temporal analysis of covariance (t-ANOCOVA) model-
ing– that results in accurate spatiotemporal salinity estimations using ECa surveyswith a significant reduction in the
number of soil samples needed for calibration of ECa to ECe. In this modeling framework, the ECe-ECa relationship is
described with a log-transformed linear function. The regression slope indicates the magnitude of the contribution
of ECe to ECa and is assumed to remain constant over time, while the intercept represents the secondary factors
influencing ECa that are not related to ECe (e.g., soil tillage). Once the t-ANOCOVA slope is established for a field,
in subsequent surveys as few as three soil samples are used to estimate a time-specific t-ANOCOVA intercept so
that ECa measurements can be converted to ECe estimations. Our results suggest that this approach is reliable at
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low salinity values (i.e., where common crops can grow). The t-ANOCOVA approach requires further validation be-
fore real-world implementations, but represents a significant step towards the use of ECa mobile sensor technology
for inexpensive soil salinity monitoring at high temporal resolution.

Published by Elsevier B.V.
1. Introduction

Managing agricultural soil salinity is crucial to sustaining future food
production. Soil salinity strongly limits global crop yields (FAO and ITPS,
2015). Over 20% of global irrigated farmland is affected by soil salinity
(Tanji and Wallender, 2012; Wicke et al., 2011). More than half of that
20% belongs to four countries: China, India, Pakistan, and the United
States of America (FAO and ITPS, 2015). Salinity is typically managed
by irrigating soils beyond the consumptivewater use of plants, leaching
from the root zone soluble salts that would otherwise harm plant
growth (e.g., sodium, chloride) due to osmotic effects, specific ion toxic-
ity effects, nutrient imbalances, and influences on tilth and permeabili-
ty. Reliable information on salinity levels of the soil root-zone (e.g., 0 to
0.9–1.5 m depth) is essential for developing salinity management strat-
egies, particularly when water resources are limited.

The complex spatial patterns of salinity usually found on agricultural
lands (Lesch et al., 1992) make it difficult to map salinity using grid or
random sampling since tremendous numbers of samples (e.g., hun-
dreds per field) are necessary. Clearly, there is a cost issue related to
monitoring the spatiotemporal changes of soil salinity at field scale
(e.g., b1 km2) over multiple fields. By using soil apparent electrical con-
ductivity (ECa, dS m−1) measurements frommobile on-the-go sensors,
expenses can be notably lowered (Lesch, 2005). Soil ECa is influenced by
several properties, including: water content, texture, and soil salinity
(Corwin and Lesch, 2005; Doolittle and Brevik, 2014). To estimate salin-
ity, ECa measurements must be site-specifically calibrated to ground-
truthmeasured soil salinity, generallymeasured as electrical conductiv-
ity of the saturation extract (ECe), by establishing a linear model be-
tween ECe and ECa (Lesch, 2012). Because it can be easily mobilized
and coupled with GPS systems, ECa is measured intensively with tens
of thousands of sampling locations per field.

Geospatial ECa measurements serve as a surrogate to characterize
the spatial variability of soil properties correlated to ECa at a given site
(Corwin and Lesch, 2003; Corwin and Lesch, 2005). In instances
where salinity dominates the ECa measurement (i.e., ECa N 2 dS m−1),
the spatial variability of ECa will represent the spatial variability of soil
salinity (Corwin and Lesch, 2013). Therefore, the ECa surveys can be
used to select representative (in terms of inferential statistics) soil sam-
pling locations that will reflect the range and spatial variation in geo-
referenced ECa measurements (Corwin and Lesch, 2005). Model-based
sampling design algorithms, such as the response surface sampling de-
sign (RSSD) (Lesch et al., 2000; Lesch, 2005), can be used to identify the
optimal representative soil sampling locations. The RSSD identifies soil
sampling locations so that the frequency statistics of the ancillary infor-
mation used, be it ECa (Lesch, 2005) or remote sensing imagery
(Fitzgerald et al., 2006) or radar data (Guo et al., 2015), is fully repre-
sented. Concurrently, the RSSDmaximizes the distance between select-
ed soil sampling locations. This latter step is directed to avoid (short-
scale) autocorrelation of ordinary least squares (OLS) regression resid-
uals (Hengl et al., 2003; Lesch and Corwin, 2008).

The first objective of this manuscript is to discuss two established
approaches in which geospatial measurements of ECa are used to mon-
itor soil salinity at field scale. The first methodology consists of using an
initial ECa survey to identify representative soil sampling locations that
are sampled for ECe over time at selected time intervals. The other con-
sists of surveying the field for ECa at each sampling time and then cali-
brating the sensor readings using soil samples taken at the time of the
ECa survey. If the spatial ECa patterns are unchanged, then the sample
locations are the same as those determined in the first ECa survey. If
the spatial ECa patterns have changed, then new sample locations are
identified that reflect the range and spatial variability of the new ECa
survey.

The second objective is to propose a novel salinity monitoring ap-
proach based on the assumption of temporal covariance (t-ANOCOVA)
of the ECe-ECa relationship, which should allow reducing the number
of soil samples needed at each monitoring time. The t-ANOCOVA is a
temporal application of the ANOCOVA ECe-ECa calibration model pre-
sented by Corwin and Lesch (2014) and later validated by Corwin and
Lesch (2016) and Scudiero et al. (2016). After an initial calibration
that requires from a half to several dozen soil samples per field depend-
ing on the extent of the variability, the t-ANOCOVA approach only re-
quires as few as three soil samples to calibrate the ECa measurements
taken at subsequent monitoring times.

2. Theoretical background

2.1. Temporal covariance of the ECe-ECa relationship

Apparent soil electrical conductivity measurements can be
expressed as a multiplicative function of salinity, water content, and
soil tortuosity, which depends on several soil properties, including soil
texture, particle pore distribution, density and particle geometry, and
organic matter content. According to Archie's Law (Archie, 1942), and
other similar models (e.g., Rhoades et al. [1976]), ECa may be expressed
as a function of pore-water salinity (ECp), soil water content, and other
soil-specific parameters:

ECa ¼ ECp � ϕm � Sn

k
ð1Þ

where ϕ is soil porosity, S is the relative saturation, and k, m, and n are
fitting parameters that are dependent on soil texture, organic carbon
content, and other physical and chemical properties (Allred et al.,
2008). However, Eq. (1) is not applicable when soil is too dry because
the water pathways for electrical conductivity are not continuous. As a
rule of thumb, Corwin and Lesch (2013) suggest that volumetric water
content should be at least 70% of field capacity when the ECa survey is
carried out.

Because the pore-water electrical conductivity, ECp, can generally be
expressed as a linear function of the total ion content in the soil
(Rhoades et al., 1989), salinity (ECe) can be expressed as a function of
ECa with a multiplicative error model (Corwin and Lesch, 2014):

ECe ¼ β � ECα
a � ε� ð2Þ

where α and β are coefficients that subsume ϕ, S, k,m, and n; and ε⁎ is a
multiplicative error component. In Eq. (2), the error component is a
function of the ratio between ECe and the explanatory term of the equa-
tion (Baskerville, 1972; Tian et al., 2013).

After a log transformation of Eq. (1), the ECa-ECe relationship is:

ln ECeð Þ ¼ ln βð Þ þ α � ln ECað Þ þ ε ð3Þ

where ε is a random additive error component, equal to ln(ε⁎). Eq. (3)
can be parameterized using an OLS approach, provided the underlying
assumptions (including residuals being normally distributed and spa-
tially independent) are respected (Lesch and Corwin, 2008).

The influence of salinity on ECa readings is reflected in the slope (α)
of Eq. (3). The effects not due to salinity but to other soil properties (e.g.,
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water content, bulk density) are represented by the regression inter-
cept. This approach, referred to as an analysis of covariance (ANOCOVA)
approach, has been previously used to map salinity at multiple fields
using regional values of α (Corwin and Lesch, 2016; Corwin and Lesch,
2014; Scudiero et al., 2016). In these studies, a group of calibration fields
were selected having broad ranges of salinity and differing soil types. In-
tense ECa surveys were carried out. At each field, soil was sampled ac-
cording to the spatial variability of ECa. A common (i.e., regional) α
coefficient was established. The determination of ln(β)wasfield-specif-
ic. Using the regional α coefficient, ECe can be estimated at new sites by
estimating a local (i.e., site-specific) ln(β); consequently, soil sampling
labor is minimized. Ideally, only one data point is needed for estimating
the local intercept. However, error in the intercept estimation may be
sizeable when using a single data point. By sampling soil at three ran-
dom locations and then averaging the three derived intercepts, the
site-specific ln(β) should be more representative of the entire field.

An alternative approach is to use Eq. (3) in a spatiotemporal frame-
work. We refer to this approach as temporal analysis of covariance (t-
ANOCOVA). We discuss the case when the coefficient α is calculated
at an initial salinity survey and then used to calibrate the ECe-ECa rela-
tionship at other times. For each consecutive survey, an intense ECa sur-
vey is carried out and soil is sampled at three locations for the
calculation of a time-specific ln(β).

3. Materials and methods

The salinity assessment methodologies are discussed using data
from a long-term study on salinity changes under different irrigation re-
gimes. The study was carried out over a 32.4 ha saline field (latitude
36°11′24.827″N, longitude 119°52′45.455″W) in Kings County, Califor-
nia, with a portion of the data published by Corwin et al. (2008) and
Corwin (2012). Fine, montmorillonitic, thermic, Typic Natrargid
(Arroues and Anderson, 1986) clay loam soils are found at the site. Ad-
ditional details on the study site can be found in (Corwin et al., 2003).
Field surveys were conducted at the site in 1999 (ECa and ECe), 2002
(ECa and ECe), 2004 (ECa and ECe), 2009 (ECe only), 2011 (ECa and
ECe), and 2012 (ECa and ECe). The 2012 field survey was not discussed
by Corwin (2012). The 2012 ECa and ECe surveys together with those
from 21 other fields scattered throughout the western San Joaquin Val-
ley (WSJV) were used by Scudiero et al. (2016) to estimate the
ANOCOVA α coefficient for the WSJV.

3.1. Apparent electrical conductivity surveys and soil sampling

ECa surveyswere conducted usingmobile electromagnetic induction
(EMI) equipment in August 1999, April 2002, November 2004, April/
May 2011, and September 2012. The 1999 survey consisted of 384 ECa
measurements acquired over a grid-like sampling scheme, with mea-
surements taken approximately 20–30 m apart. A figure of this ECa sur-
vey is featured in the paper by Corwin et al. (2003). ECa measurements
were taken with an EM38 Electrical Conductivity Meter (Geonics Ltd.,
Mississauga, Ontario, Canada). Measurements were taken in the hori-
zontal (EMh) and vertical (EMv) dipole modes to provide shallow (0–
0.75 m) and deep (0–1.5 m) measurements of ECa, respectively. The
sampling locations were georeferenced with sub-meter accuracy using
a Trimble Pro-XRS GPS system (Trimble, Sunnyvale, CA, USA).

Subsequent ECa surveys were more intensive. In 2002, 2004, 2011,
and 2012, ECawasmeasuredwith a dual-dipole EM38 (acquiring simul-
taneous EMh and EMv readings) coupledwith a sub-meter accuracy GPS
and mounted on a mobile, non-metallic, platform. ECa was measured
every ~4 m along parallel transects spaced roughly 8 m apart, totaling
over 20,000 locations for each survey. The volumetric water content
was close to field capacity when all ECa surveys were conducted. Fig. 1
shows the ECa survey for 2002. The ECa spatial patterns were similar
to those in 2004, 2011, and 2012.
Using the ECa data from the 1999 EMI survey and ESAP software
(Lesch et al., 2000), 40 soil sampling locations were selected to repre-
sent the frequency distribution of the bivariate EMI survey data, and
to be allocated across the field to avoid spatial clustering.

Soil cores were taken at the 40 sites, in the days following the ECa
surveys and in August 2009. At each site (Fig. 1), soil-cores were taken
at 0.3 m increments to a depth of 1.2 m. Additionally, in 2002, 60 loca-
tions were sampled in two subsections of the field (Fig. 1). These loca-
tions, which will be used as independent validation data, were
selected using the RSSD. All soil cores were kept in refrigerated storage
prior to air-drying and sieving (2-mm sieve), which occurred within a
few days after their collection. Soil samples were then analyzed for
soil salinity (ECe) and other (see Corwin [2012]) physical and chemical
properties.

3.2. Soil salinity monitoring

3.2.1. Characterizing ECe using ECa-directed soil sampling
If the frequency distribution of ECe can be described by that of ECa,

then a representative subsample of ECa can be used to describe the
ECe population. This is referred to as ECa-directed soil sampling
(Corwin and Lesch, 2005; Lesch, 2005).

In the case where the relative spatial structure of ECa is stable across
a site over time, then the same soil sampling locations can be revisited
over time because the ECa frequency distribution remains unchanged.
The 1999 soil sampling scheme was sampled over time to estimate
the frequency distribution of ECe at the site. The validity of this approach
was verified by comparing the ECa frequency distribution of the entire
field over the 40 soil sampling locations with a (two-sample) Kolmogo-
rov–Smirnov test.

3.2.2. ECe-ECa linear regression and spatial interpolation.
Site-specific linear relationships between ECa and ECe can be

established, so that ECe can be estimated at all locations where only
ECa is measured. Multiple OLS regression can be used to calibrate the
ECe-ECa relationship. Ordinary Least Squares regression analysis makes
several key assumptions, including: no or little multicollinearity be-
tween explanatory variables, homoscedasticity, and normality and spa-
tial randomness of the residuals (Achen, 1982). When dealing with
spatial datasets, particular attention should be given to avoiding spatial
autocorrelation of the residuals (Cordioli et al., 2017; Lesch and Corwin,
2008). To do so, model-based sampling scheme optimization methods,
such as the RSSD, should be used. This assumption can be tested using
the Moran's I Test for Residual Spatial Autocorrelation (Cliff and Ord,
1981).

Often, spatial autocorrelation in the residuals can be avoided by in-
cluding information on trend surface parameters (i.e., x and y coordi-
nates) in the OLS regression (Lesch, 2012). Salinity is estimated as:

ln ECeð Þ ¼ γ0 þ γ1 � ln EMvð Þ þ γ2 � ln EMhð Þ þ γ3 � xþ γ4 � yþ ε ð4Þ

where γ0,γ1,γ2, γ3, andγ4 represent the empirical regressionmodel co-
efficients; x and y are the easting and northing UTM coordinates (m),
and ε is random the error term. If there was no multicollinearity be-
tween EMv and EMh, then Eq. (4) was unchanged. Otherwise,
multicollinearity was addressed by removing the least significant of ei-
ther ECa measurements or by using the principal components (PCA1
and PCA2) of EMv and EMh. Principal component analysis was carried
out with Statistica 12 (StatSoft Inc. Tulsa, Oklahoma, USA). For further
detail on the use of OLS regression for prediction of spatial soil property
information from ancillary sensor data, refer to Lesch and Corwin
(2008) and (Lesch, 2012). A walkthrough application of this mapping
approach is provided by Corwin and Scudiero (2016).

The ECe-ECa calibration regressions were established for each sam-
pled depth. Once ECe was estimated at all ECa survey locations simple
kriging, based on spherical experimental semivariograms, was used to



Fig. 1.Map of the study site, located in central California (USA). The apparent electrical conductivity (ECa) survey of 2002, the ECa-directed soil sampling scheme of 1999 (and repeated in
following surveys), and the 60 validation locations sampled in 2002 are depicted with dots, stars, and diamonds respectively.
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map salinity across the field using ArcMap 10.1 (ESRI, Redlands, CA,
USA). Each kriging surface had a spatial resolution of 2 × 2 m. The ECe
maps were stacked according to their depth interval. Three-dimension-
al spatiotemporal changes were depicted using selected 200-m long
cross sections having vertical × horizontal resolution of 0.3 × 2 m. The
cross sections were visualized on Google Earth™ according to Van
Noten (2016). This approach is discussed using the changes of soil salin-
ity between the 2002 and 2011 surveys.

3.2.3. ECe-ECa t-ANOCOVA
Two t-ANOCOVA approaches were tested, using differentα (i.e., the

t-ANOCOVA slope) parameters: one local (site-specific) and one from a
multiple-field dataset. For this comparison the local slope was calculat-
ed from the 2012 survey. The multi-field t-ANOCOVA slope coefficient
was taken from the Scudiero et al. (2016) study (α = 0.99 with a
standard error of 0.05). Note that the study field was included in the
Scudiero et al. (2016) dataset. The ECa surveys from previous times
(i.e., 1999, 2002, 2004, and 2011 surveys) were then used tomap salin-
itywith the t-ANOCOVA approach. The t-ANOCOVA interceptwas calcu-
lated by selecting three random ECe sampling locations. The t-
ANOCOVA model was developed to estimate the average 0–1.2 m soil
salinity profile.

Because only three random samples are needed to estimate the t-
ANOCOVA intercept, the remaining 37 locations could be employed to
validate the t-ANOCOVA ECe estimations. Validation was done by
cross-validation as follows: 1) three locations were selected (no re-
placement allowed); 2) the t-ANOCOVA intercept was calculated at
each of the three points and then averaged; 3) the averaged intercept
was used to estimate salinity over the remaining (thirty-seven) sam-
pling locations to independently validate the t-ANOCOVA estimations.



Fig. 2. Histograms showing change in average soil salinity (ECe) (bars represent standard
deviation) for the depth increments 0–0.3, 0.3–0.6, 0.6–0.9, and 0.9–1.2 m and the
composite depth 0–1.2 m for the years 1999, 2002, 2004, 2009, 2011, and 2012.
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The cross-validation procedure was repeated 9880 times in order to
consider all possible unique combinationswhere three random samples
were chosen for the t-ANOCOVA intercept calculation. The frequency
distributions of the mean absolute error (MAE, in dS m−1) and of the
observed-predicted relationship were retained for further analysis.
This procedure was carried out to test the t-ANOCOVA predictions
using the 1999, 2002, 2004, and 2011 surveys.

4. Results and discussion

4.1. Characterizing ECe changes with ECa-directed soil sampling

At all dates the ECa measurements were characterized by significant
(p b 0.001) Pearson r correlation coefficients with soil salinity (Table 1),
affirming that ECa is a proxy to infer the frequency distribution of ECe at
the site.

The Kolmogorov-Smirnov test showed that the frequency distribu-
tions of EMh and EMv at the 40 soil sampling locations never significant-
ly differed from thefield-wide EMh and EMv ECa surveys. This supported
the use of the 1999 soil sampling locations as representative of the spa-
tial variability of ECa throughout the entire experiment. Other authors
(Corwin, 2012; Farahani and Buchleiter, 2004; Pedrera-Parrilla et al.,
2016) reported that relative spatial patterns of ECa in uniformly man-
aged farmland remain stable over time because of the influence of tex-
ture on water content and solute transport, which subsequently affect
the spatial variability of salinity.

Fig. 2 shows the changes at each depth increment, and over the av-
erage 0–1.2 m profile, from 1999 to 2012. The changes in salinity are
due to different irrigation practices at the site. From 1999 to 2010,
the field was irrigatedwith drainagewater and cropped with Bermu-
da grass (Cynodon dactylon (L.) Pers.) for cattle grazing. This irriga-
tion practice resulted in the decrease of salinity in the root-zone
(0–1.2 m) and in the general improvement of several soil physical
and chemical properties (Corwin, 2012). Due to the historic multi-
year drought that hit California in 2010 (Williams et al., 2015), drain-
age water ceased to be available. Field management was switched to
rain-fed in 2010 through 2012. Because of the shallow water table at
the site, salinity rapidly increased due to the upward movement of
water from the water table to the soil surface returning the field to
its original saline-sodic state. During the drought, salt crusts (re-)
appeared at the south-west side of the field. In many areas of the
field Bermuda grass was naturally outcompeted by invasive halo-
phytic weeds.

4.2. Mapping 3D salinity change with OLS regression

When (spatial) information on soil salinity changes is required
across an entire field, geospatial ECa measurement can be used. Table
2 shows depth- and time-specific relationships between ECa readings
Table 1
Pearson correlation coefficientsa between apparent electrical conductivity and soil salinity
(ECe) at different depths, in 1999, 2002, 2004, 2011, and 2012.

Year EMIb 0–0.3 m 0.3–0.6 m 0.6–0.9 m 0.9–1.2 m 0–1.2 m

1999 EMv 0.37* 0.78*** 0.71*** 0.57*** 0.80***
EMh 0.52*** 0.77*** 0.60*** 0.42** 0.76***

2002 EMv 0.63*** 0.73*** 0.80*** 0.69*** 0.84***
EMh 0.77*** 0.85*** 0.82*** 0.61*** 0.89***

2004 EMv 0.62*** 0.82*** 0.89*** 0.86*** 0.89***
EMh 0.71*** 0.88*** 0.89*** 0.81*** 0.91***

2011 EMv 0.77*** 0.81*** 0.80*** 0.73*** 0.89***
EMh 0.81*** 0.83*** 0.76*** 0.65*** 0.88***

2012 EMv 0.68*** 0.78*** 0.82*** 0.71*** 0.83***
EMh 0.73*** 0.80*** 0.77*** 0.61*** 0.81***

a Significant correlation at the 0.05 (*), 0.01 (**), and 0.001 (***) probability levels.
b EMh, electromagnetic induction measurement (EMI) in the horizontal coil configu-

ration; EMv, electromagnetic induction measurement in the vertical coil configuration.
and soil salinity measurements at the forty soil sampling locations. For
all regressions (i.e., time-specific calibrations, TSC), the analysis of vari-
ance indicated that the F valueswere highly significant (p N F at b0.001).
Moreover, the explanatory variables of all models were significant at
p b 0.05 or below. General OLS assumptions were respected. In particu-
lar, the Moran's I test for residual autocorrelation did not indicate the
presence of any significant spatial structure in the residuals of any of
the models in Table 2. The inclusion of a surface trend component was
not always needed to avoid spatial autocorrelation in the residuals.
These results suggest that, when carrying out TSC regressions, the use
of surface trend component should to be assessed for each single case.

The TSC models in Table 2 were used to estimate ECe, at all four
depths and for both years (i.e., 2002 and 2011), at every location
where ECa was measured. Maps of soil salinity were created using the
default simple kriging settings in ArcMap 10.1′s Geostatistical Analyst
package. When presenting salinity estimations from regression models
and spatial interpolation techniques, information on the prediction er-
rors should be provided to the stakeholders, especially considering the
buildup of error in the process (e.g., Nelson et al. [2011]). For the reason
of brevity the quality assessment of the cross-section accuracy will not
be shown. Ordinary least squares regression followed by kriging of the
regressed values is known as type-B regression kriging (Odeh et al.,
1995). An alternative to this approach is the regression kriging approach
described by Hengl et al. (2004), in which the spatial interpolation sur-
face of the regression predictions is added to that of the residuals. Unfor-
tunately, this approach generally requires a large number of soil
sampling locations (e.g., hundred per field) so that a semivariogram
can be fitted to the residuals. At field-scale the spatial structure of the
OLS residuals can be addressed by including a trend surface component
Table 2
Ordinary least square regressions estimating (log-transformed) soil salinity. The back-
transformedmean absolute error (MAE) for the observed-estimated salinity relationships
are reported.

Year Depth (m) Explanatory variablesa R2 Back-transformed

R2 MAE (dS m−1)

2002 0–0.3 Intercept, x, y, ln(EMh) 0.78 0.79 1.88
0.3–0.6 Intercept, x, ln(EMh) 0.73 0.77 2.53
0.6–0.9 Intercept, ln(PCA1) 0.72 0.75 1.51
0.9–1.2 Intercept, ln(PCA1) 0.53 0.53 4.52

2011 0–0.3 Intercept, ln(PCA1), ln(PCA2) 0.63 0.69 3.17
0.3–0.6 Intercept, ln(EMh) 0.71 0.70 4.35
0.6–0.9 Intercept, ln(PCA1) 0.70 0.66 4.21
0.9–1.2 Intercept, y, ln(PCA1), ln(PCA2) 0.77 0.76 3.60

a EMh, electromagnetic induction measurement in the horizontal coil configuration;
EMv, electromagnetic induction measurement in the vertical coil configuration; PCA1 and
PCA2, first and second components of the principal component analysis for EMh and EMv.
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in the regression modeling, as seen at this study site and in other pub-
lished work (Huang et al., 2016; Lesch, 2012).

The salinity maps were stacked, and then cross sectionswere select-
ed and visualized inGoogle Earth Pro™ (Version 7.1.5.1557. Google Inc.,
Menlo Park, California, USA) according to Van Noten (2016) (Fig. 3). In
particular, Fig. 3 shows the change of salinity across selected cross-sec-
tions between 2002 and 2011: negative changes indicate salt removal
due to leaching and positive changes indicate salt accumulation. This vi-
sualization method enables producers and other stakeholders to inter-
actively explore the extent of spatiotemporal changes across areas of
interest. Ideally, tens of parallel (and crossing) profiles can be created
and displayed interactively. Attention should be given to reporting the
vertical exaggeration properly. In Fig. 3, the cross-sections have
horizontal × vertical cell size of 2 × 0.3 m.

4.3. t-ANOCOVA ECe estimations

Goodness-of-fit scores in Table 2, in particular the back-transformed
MAE values, are a clear indication that TSC can provide accurate salinity
estimations from ECa readings. Soil sampling and laboratory analyses
can be costly, especially if information on salinity is needed at a high
temporal resolution. For this purpose, the t-ANOCOVA approach is
ideal. Using the t-ANOCOVA approach, only three soil samples are need-
ed per field (or portion of farmland under similarmanagement and con-
ditions). This notably decreases soil sampling and laboratory analyses
expenses, making the use of ECa appealing for routine soil salinity mon-
itoring campaigns.

The t-ANOCOVA was first calculated with a local slope, using the
2012 survey data. The 2012 TSC to estimate the average (0–1.2 m) soil
salinity at the site was:

ln ECeð Þ ¼ 2:33 �0:080ð Þ þ 0:622 �0:069ð Þ � ln ECað Þ þ ε ð5Þ

Eq. (5)was highly significant (p N F at b0.001)with a R2=0.680 and
had no significant spatial bias in its residuals. The regression coefficients
were highly significant (p b 0.001) and had small standard errors
Fig. 3. 2002–2011 soil salinity (ECe) changes at three selected parallel 1.2-m deep profiles. The
Earth™ imagery captured on 5/2/2015. Eye altitude is 239 m.
(reported in parenthesis). When back-transformed, the observed-esti-
mated relationship had R2 of 0.695 and MAE of 3.08 dS m−1. Local
scale variability of the ECa-ECe relationship, as well as measurement
and random errors, may be among the possible reasons why Eq. (5),
as well as the equations in Table 2, could not explain a greater portion
of the observed variance of soil salinity.

The slope of Eq. (5) was used to estimate soil salinity in 1999, 2002,
2004, and 2011 using only three random soil sampling locations to cal-
culate time-specific t-ANOCOVA intercepts. The remaining 37 locations
were used as validation. Fig. 4a shows the frequency distribution of the
t-ANOCOVA validations for the 9880 re-sampling iterations, in 1999,
2002, 2004, and 2011. TheMAEs of the back-transformed observed-pre-
dicted ECe relationship are reported. The TSC MAE values in 1999
(2.20 dS m−1), 2002 (2.51 dS m−1), 2004 (2.75 dS m−1), and 2011
(2.80 dS m−1) are reported in Fig. 4a for comparison. In a very limited
number of cases in 1999, 2002, and 2011, the t-ANOCOVAoutperformed
the TSC modeling. The median MAE values (i.e., line across boxes) in
1999 (2.55 dS m−1) and in 2011 (3.14 dS m−1) are very close to the
TSCMAEs. Themedian MAE are slightly higher compared to the TSC er-
rors in 2002 (3.36 dS m−1) and notably higher in 2004 (4.49 dS m−1).
The 95th percentile MAE for the t-ANOCOVA estimations were
3.76 dS m−1 (1999), 5.48 dS m−1 (2002), 7.14 dS m−1 (2004), and
5.28 dS m−1 (2011). The median time-specific t-ANOCOVA intercepts
were 2.01 (standard deviation, s.d., 0.08 dS m−1) in 1999, 2.09 (s.d.
0.13 dS m−1) in 2002, 2.05 (s.d. 0.18 dS m−1) in 2004, and 2.50 (s.d.
0.11 dS m−1) in 2011.

The t-ANOCOVA slope (i.e., Eq. (5)) is the exponent in the non-linear
ECe-ECa relationship. Eq. (5) is an experimental fit of the ECe-ECa rela-
tionship in the range of ECe values observed in 2012. It is likely that
the slope of Eq. (5) is not representative of the ECe-ECa relationship
over a different ECe range. The 2012 ECe values (min = 5.7 dS m−1,
mean = 20.9 dS m−1, max = 38.6 dS m−1, and s.d. = 7.0 dS m−1)
were similar to those of 1999 (min = 12.8 dS m−1, mean =
20.3 dS m−1, max = 36.6 dS m−1, and s.d. = 5.1 dS m−1), slightly
smaller than those of 2011 (min = 6.3 dS m−1, mean = 22.5 dS m−1,
max = 41.3 dS m−1, and s.d. = 7.7 dS m−1), and higher than those of
cross-sections have horizontal resolution of 2 m and vertical resolution of 0.3 m. Google
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2002 (min=7 dSm−1, mean=19.0 dSm−1, max= 34.6 dSm−1, and
s.d. = 5.9 dSm−1) and 2004 (min= 4.6 dSm−1, mean=18.1 dSm−1,
max = 38.6 dS m−1, and s.d. = 7.8 dS m−1). Thus, the greater the dif-
ferences in the salinity dataset from that of 2012, the higher the t-
ANOCOVA validation errors in Fig. 4a. We conclude that if a local slope
is used, then it is valid only to describe the ECe-ECa relationship over
the observed ECe range associated with the local slope.

When a multi-field slope was used, the overall performances of the
t-ANOCOVA approach improved for all years but 2011. The median
MAE values were 2.42 dS m−1 (1999), 2.92 dS m−1 (2002),
3.44 dS m−1 (2004), and 3.88 dS m−1 (2011). The 95th percentile
MAE for the t-ANOCOVA estimations were 3.58 dS m−1 (1999),
4.56 dS m−1 (2002), 5.50 dS m−1 (2004), and 7.82 dS m−1 (2011).
The median time-specific t-ANOCOVA intercepts were 1.44 (s.d.
0.07 dS m−1) in 1999, 1.61 (s.d. 0.11 dS m−1) in 2002, 1.59 (s.d.
0.14 dS m−1) in 2004, and 2.16 (s.d. 0.12 dS m−1) in 2011. The multi-
field ANOCOVA slopewas calculated using the 2012 survey at the target
field and ECe-ECa data from the twenty-one fields across theWSJV. The
range of ECe in the multi-field dataset was much wider (minimum =
0.4 dS m−1; average = 11.2 dS m−1; maximum = 38.6 dS m−1;
s.d. = 7.9 dS m−1) than that of the 2012 survey for the study site. This
is probably why the t-ANOCOVA validation errors are lower in Fig. 4b
than in 4a. Most data points with ECe N 25 dS m−1 in the Scudiero et
al. (2016) dataset were from the field discussed in this manuscript.
The 2011 survey had slightly higher salinity values than that dataset,
probably causing the increase of errors of the t-ANOCOVA predictions
for that year using the multi-field slope rather than the local. In this
paper, the multi-field slope was obtained from a regional scale salinity
assessment study (Scudiero et al., 2016). However, in practical applica-
tions, it could be obtained from a group of contiguous fields (e.g., an en-
tire farm), as done for the Broadview Water District by Corwin and
Lesch (2014).

To properly compare the performance of TSC and (multi-field slope)
t-ANOCOVA ECe estimations, Fig. 5 reports theMAEs at the 60 locations
sampled in 2002 (minimum = 8.4 dS m−1; average = 19.7 dS m−1;
maximum = 32.5 dS m−1; s.d. = 6.3 dS m−1) and used here as inde-
pendent validation. The MAE obtained with the TSC calibration was
2.26 dS m−1. For this independent validation set, the t-ANOCOVA esti-
mations were calculated using the 9880 time-specific intercepts (for
year 2002) calculated from the 40 soil samples. The median MAE for
the t-ANOCOVA was 2.68 dS m−1. The slight difference between the
two values supports the use of the t-ANOCOVA approach, as very similar
levels of ECe prediction accuracy were obtained, but the t-ANOCOVA
used substantially fewer soil samples.

When modeling log-transformed data, the error component, when
back-transformed, is a function of the ratio between ECe and the explan-
atory term of the equation (Baskerville, 1972; Tian et al., 2013). Large
errors at high salinity values should be expected. For a close look at
the t-ANOCOVA performances, let us consider the 2011 survey, when
themulti-field slope provided the highest t-ANOCOVA validation errors.
Fig. 6 shows the back-transformed observed-predicted ECe relation-
ships for the 37 validation points. In particular, re-sampling iterations
yielding the 50th (Fig. 6a), 75th (Fig. 6b), and 95th (Fig. 6c) percentile
of the MAE distribution are shown. The t-ANOCOVA MAEs were
3.89 dS m−1 (50th percentile), 4.77 dS m−1 (75th percentile), and
7.79 dS m−1 (95th percentile). The high MAE values are mainly due to
larger errors for predictions of ECe at N20–25 dS m−1. It is important
Fig. 4. The t-ANOCOVA performance when using a) local (i.e., field specific) and b) multi-
field slope parameter values. The boxplots represent the distribution of themean absolute
error (MAE) values of the back-transformed observed-predicted soil salinity at thirty-
seven independent validation locations, obtained from the 9880 t-ANOCOVA iterations,
for each year. The bottom of the rectangles corresponds to the 25th percentile, the top
to the 75th. The line crossing the rectangles represents the median value. The whiskers
endpoints correspond to 1.5 times the interquartile range. Circles represent the 95th
percentile values. Asterisks represent maximum outliers. For comparison, the time-
specific calibration (TSC) MAE values are depicted.



Fig. 5.Mean absolute errors (MAEs) for the 2002 t-ANOCOVA (withmultiple-field slopes)
salinity predictions at the 60 independent soil sampling locations. The independent MAE
obtained when estimating salinity using a time-specific calibration (TSC) is reported
with the black dot.
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to note, that low errors are always associated with low salinity values,
which is very relevant when dealing with agronomically important
ranges of soil salinity. The results suggest that the t-ANOCOVA approach
can be very reliable, but only at low salinity values. For 2011, when the
observed data points with ECe N 20 dS m−1 (i.e., 22 sampling locations)
were excluded from the t-ANOCOVA estimations, then the validation
MAEs decreased to 2.30 dS m−1 (5th percentile), 2.47 dS m−1 (25th
percentile), 2.70 dS m−1 (50th percentile), 3.14 dS m−1 (75th percen-
tile), and 4.58 dS m−1 (95th percentile).
Fig. 6. Observed-predicted salinity (ECe) relationships for the t-ANOCOVA validation iterations
4.4. Conclusions

In this paper, we reviewed how to use geospatial measurements of
ECa to i) infer the frequency distribution of ECe at a target site and ii)
to map salinity and its changes over time, providing spatiotemporal in-
formation. The first approach can be used when monitoring salinity
changes over homogeneously-managed farmland, such as an entire
field or a portion of it. Site-specific irrigation (e.g., Liang et al. [2016])
can be used to manage salinity, by applying different amounts and
rates of water over fairly homogeneous sections of a field, also known
as site-specific management units (SSMUs). The salinity changes at
each SSMU can be monitored using ECa-directed soil sampling. The sec-
ond approach is useful when spatially continuous information is needed
over an entire field: for example, when the response of crop health (e.g.,
measured with remote sensing) to spatial changes of salinity is investi-
gated. Both methodologies rely on the use of several (e.g., dozens) soil
samples to infer salinity and/or to calibrate ECa measurements.

Due to the reduced labor costs, the t-ANOCOVA approach can be
used to monitor spatiotemporal salinity changes in the root-zone (e.g.
0–1.2 m) at reasonably high temporal resolution. This approach is
based on the notion that the ECe-ECa relationship can be described
with a power (nonlinear) model. When this relationship is log trans-
formed, a general slope coefficient can be used to estimate ECe from
ECa measurements for an entire farmland (or region). At each monitor-
ing date, a field-specific intercept is calculated from as few as three sam-
pling locations. When the t-ANOCOVA slope is properly calibrated, the
salinity estimations in the ranges of interest for agronomical production
(ECe b 20 dSm−1) are reasonably accurate. However, as shown in Fig. 4,
estimates having large errors may be generated using this approach.

A future experiment to validate the t-ANOCOVAmethodology could
be done by monitoring salinity changes over multiple irrigated fields
with salinity ranging from 0 to 20–30 dS m−1. Initially, a farm-wide t-
ANOCOVA slope should be calculated. Then, at subsequent ECa surveys,
three random soil sampling locations should be used for the calibration
of the field-specific t-ANOCOVA intercept. A few (e.g., 10) validation
points per field should be selected, to assess the quality of the t-
ANOCOVA predictions. To understand the t-ANOCOVA strengths and
limitations, the study should compare the t-ANOCOVA independent val-
idation errors with TSC independent validations over the same loca-
tions. The ECa surveys should follow consistent protocols discussed by
Corwin and Scudiero (2016), with particular attention to soil tempera-
ture and carrying out the surveys at comparable soil water contents.
In fields characterized by high spatial variability of soil texture, bulk
density, and other soil properties that influence the ECa measurements,
ancillary information from other soil sensors, such as gamma-ray and
visible/near-infrared spectroscopy, could be integrated in Eq. (2) to
providing the a) 50th, b) 75th, and c) 95th percentiles of the mean absolute error (MAE).
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increase the accuracy of ECe predictions:

ECe ¼ δ� ECα
a �Ωζ � ε� ð6Þ

where Ω is soil sensor data used as a proxy for texture, or any other
quantitative indicator of soil type found to influence ECa in the area of
interest, and α, ζ, and δ are the model coefficients. The α and ζ coeffi-
cients should be estimated during the initial multi-field calibration,
whereas δ should be estimated, at each field, every time salinity is
measured.

If validated, the t-ANOCOVA approach would be beneficial to
farmers, agricultural consultants, and other stakeholders. In arid and
semi-arid agricultural areas where water resources for irrigation are in-
creasingly limited and of lower quality (i.e., of higher salinity), monitor-
ing spatiotemporal variations of soil salinity in a timely and inexpensive
fashionwill be essential to preserving the long-term sustainability of ag-
ricultural production.
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