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Abstract: Disjunctive kriging (DK) is a nonlinear geostatistical model that provides unbiased estimates of the conditional probability (CP)
that the true value of the property of interest does not exceed a defined threshold. It has important implications in aiding management
decisions by providing growers with a quantitative input that can be used for evaluating the variability of the crop productivity at different
zones in fields. The objectives of this study are (1) to identify the yield potential percentage (YP%) for several crops at different zones in fields
under multiple soil salinity thresholds; (2) to evaluate the YP% of whole fields for several crops under multiple soil salinity thresholds; and
(3) to provide guidelines to help growers decide which crops to grow. To achieve these objectives, the DK technique was applied to data from
a project conducted in the southeastern part of the Arkansas River Basin in Colorado to generate CP maps. Two data sets of soil salinity (316
and 136 points) that were collected in two fields in 2004 and 2005 were used to generate the CP maps and to evaluate different scenarios of the
expected YP% of several crops at multiple soil salinity thresholds. These data sets represented a wide range of soil salinity conditions to
evaluate a wide variety of crops (i.e., a larger set of crops than those grown in the study area) in accordance with their soil salinity tolerance,
The following crops were evaluated: the field crops, barley, sorghum, and corn; the fruit crops, pomegranate, apples, and strawberries; the
vegetable crops, beets, tomatoes, and lettuce; and the forage crops, barley (i.e., hay), crested wheat grass, and alfalfa. This selection was set so
that the three crops of each type represented high, moderate, and low soil salinity tolerances. Scenarios were created for each of the afore-
mentioned crops and the DK technique was applied to each scenario to generate CP maps and to evaluate the expected YP%. The results of
this study show that the CP maps generated by using the DK technique give an accurate characterization and quantification of the different
zones of the fields. CP maps can be used to assess the expected YP% of whole fields for several crops under multiple soil salinity thresholds.
On knowing the YP% of different areas, a management decision action can be undertaken to manage the productivity of a field in low
productivity areas by selecting another crop or adjusting inputs such as fertilizer, seeding rates, and herbicides. DOI: 10.1061/(ASCE)
IR.1943-4774.0000392. © 2012 American Society of Civil Engineers.
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Introduction

Approximately 25 to 30% of the irrigated lands in the United States
have crop yields that are negatively affected by high soil salinity
levels (Tanji 1990; Postel 1989; Ghassemi et al. 1995; Wichelns
1999). Worldwide crop production losses associated with salinity
on irrigated lands are an estimated US$11 billion annually and are
increasing (Ghassemi et al. 1995). The Arkansas River is one of the
most saline rivers in the United States (Tanji 1990; Miles 1977).
The Arkansas River drains approximately 25% of the state and
is the state’s largest river basin. Soil salinity problems exist when
the buildup of salts in a crop’s root zone is significant enough that it
results in a loss in crop yield. Soil salinity negatively affects crop

growth by increasing the osmotic potential of the soil solution
(Jones and Marshall 1992), which decreases a crop’s ability to ex-
tract water. This suppresses plant growth and decreases yield. The
development of saline soils is a dynamic phenomenon that needs to
be monitored regularly to secure up-to-date knowledge of its extent,
spatial distribution, nature, and magnitude (Ghassemi et al. 1995).

Linear kriging methods such as simple, ordinary, and universal
kriging are well established for predicting soil variables at un-
sampled locations, and have been used widely in soil and water
science. Eldeiry and Garcia (2008a, 2008b, 2010a) used different
linear kriging techniques to estimate soil salinity by using remote
sensing data. Burgess and Webster (1980) and Webster and
Burgess (1980) demonstrated the use of block and universal krig-
ing. Triantafilis et al. (2001) used ordinary kriging, regression
kriging, three-dimensional kriging, and cokriging to predict soil
salinity from electromagnetic induction data in irrigated cotton.
However, correctly assessing prediction uncertainty (i.e., condi-
tional probability) is as important as predicting a variable at un-
sampled locations. Nonlinear kriging methods provide estimates
of the conditional distribution of a variable quantity. Two groups
of nonlinear kriging techniques exists in which the conventional
linear kriging estimators are applied to the data after a nonlinear
transformation. The first group is the indicator method (Journal
1983) in which the nonlinear transform to data is a discrete
(i.e., binary) indicator variable. These techniques have been widely
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applied (e.g., Van Meirvenne and Governs 2001; Halvorson et al.
1995, Eldeiry and Garcia 2011). The second group of technique,
which is discussed in this study, involves the nonlinear transforma-
tion of the data to a continuous (i.e., Gaussian) variable. This ap-
proach is exemplified by disjunctive kriging (DK) (Matheron 1976)
and is widely used in soil science (e.g., Wood et al. 1990;
von Steger et al. 1996).

DK, unlike other geostatistical methods such as ordinary krig-
ing, can be used as a quantitative method for making management
decisions if the conditional probability (CP) information is avail-
able. DK has several advantages over linear estimation methods.
It provides a more accurate estimate of the property of interest
and can generate an estimate of the CP for that property (Yates
and Yates 1988). This CP can be used as an input to a management
decision-making model and thereby provide a quantitative means
of determining whether management actions are necessary (Yates
and Yates 1988). An action should be taken whenever the value of a
property in a region is larger than the cutoff level at a probability
that is equal to or greater than the critical probability level. Such
management decisions may often be based on the threshold values
of a soil property. There may be threshold concentrations of con-
taminants specified by regulators that land managers are obliged to
maintain. The management of soil nutrients may also be based on
threshold values. For example, in accordance with the University of
Nebraska recommendations (Ferguson et al. 2000), no phosphorus
is needed if the concentration of available (Bray-1) phosphorus in
the soil is larger than 15 mg × kg�1. Other examples exist in which
the threshold values of other soil properties are important for man-
agement. In Scotland, if the concentration of cobalt in pasture soils
is smaller than 0:25 mg × kg�1 then action should be taken to
avoid cobalt deficiency in grazing livestock (Webster and Oliver
1989). Land use planning may also refer to threshold values of soil
properties. Wood et al. (1990) used a DK technique to estimate and
map the soil salinity in the Bet Shean Valley of Israel from mea-
surements of electrical conductivity. Zirschky (1985), Zirschky and
Harris (1986), and Zirschky et al. (1985) used geostatistics for de-
termining reclamation strategies for the cleanup of hazardous waste
sites. The kriged estimates of the concentrations of contaminants
may be used to plan soil remediation. For example, estimates of
the concentration of a nutrient may be used to plan spatially
variable application of fertilizers (Schepers et al. 2000). Russo
(1984a, b) described a method that used geostatistics to aid man-
aging the soil salinity of a heterogeneous field.

In addition to kriging techniques, other authors have used delin-
eation of management zones for soil salinity or for yield manage-
ment. Fridgen et al. (2000) used elevation, soil salinity, and slope to
create management zones for wheat. Fleming et al. (1999) used
bare soil color, farmers’ perception of yield, and field topography
to classify fields into high, moderate, and low productivity zones.
Fraisse et al. (1999) used cluster analysis to identify areas that have
similar landscape attributes, soil properties, and plant parameters to
quantify patterns of variability and to reduce the empirical nature of
defined management zones. Stafford et al. (1998) used fuzzy clus-
tering of combined yield monitor data to divide a field into potential
management zones. Boydell and McBratney (1999) divided a field
into management zones by using cotton yield estimates from
satellite imagery.

Most of the previous studies that used geostatistical techniques
were able to provide different approaches to assess soil salinity.
However, most of these studies do not provide techniques that in-
tegrate soil salinity and crop yield to improve crop production.
Geostatistical techniques have been used for the management of
soil nutrients, land use, and reclamation (Ferguson et al. 2000;
Webster and Oliver 1989; Wood et al. 1990, Zirschky 1985;

Zirschky and Harris 1986; Zirschky et al. 1985; Schepers et al.
2000). Only a few studies have utilized geostatistical techniques
to manage soil salinity (Eldeiry and Garcia 2011; Wood et al. 1990;
Russo 1984a, and Russo 1984b). Eldeiry and Garcia (2011) used
indicator kriging (IK), a non-linear technique, for soil salinity and
yield management to maximize the economic benefits. They ap-
plied IK to different scenarios of crops and soil salinity thresholds
to generate maps that show the expected percent yield potential
areas and the corresponding zones of uncertainty. DK, a nonlinear
technique, is used in this study to provide unbiased estimates of the
conditional probability (CP) that the true value of the property of
interest does not exceed a defined threshold. Even though two dif-
ferent techniques (i.e., DK and IK) have been used in the current
study and the Eldeiry and Garcia (2011) study, both techniques pro-
vide management tools to maximize the crop productivity under the
current soil salinity conditions. The main contributions of this study
are (1) the evaluation of several crops under different soil salinity
thresholds, which provide growers with a variety of crop selections;
(2) the generation of CP maps that can be used to quantify the vari-
ability of YP% in different soil salinity zones of fields; and (3) the
use of CP maps as management tools to increase crop productivity
on the basis of the current soil salinity of different fields.

Data and Methodology

Study Area

The study area is located in the southeastern part of the Arkansas
River Basin in Colorado near the cities of Rocky Ford and La Junta
(Fig. 1). Farmers in this area are facing decreasing crop yields ow-
ing in part to high levels of salinity in their irrigation water. In some
areas, land is removed from production because of unsustainable
crop yields. This is partly the result of the fact that the Arkansas
River is one of the most saline rivers in the United States (Tanji
1990; Miles 1977). Farmland along the lower Arkansas River Basin
has been continuously irrigated since the 1870s and developed
shallow, saline water tables by the beginning of the twentieth cen-
tury (Miles 1977). Between 1969 and 1994, the average water table
depths in this region have risen approximately 0.3 to 1.3 m toward
the surface (Cain 1997). The increasing amounts of upflux of saline
groundwater has only exacerbated the salinity problems. In a sur-
vey of the region, 68% of producers stated that high salinity levels

Fig. 1. The study area in the southeastern part of the Arkansas River
Basin in Colorado
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were a significant concern (Frasier et al. 1999). Crop yield reduc-
tion because of salinity in fields in the Lower Arkansas Valley has
been estimated to be between 0 and 75% with a total revenue loss
ranging from $0 to $750/ha, using 1999 crop prices (Gates
et al. 2002).

Selected Fields and Crops

Two data sets of soil salinity points (consisting of 316 and 136
points) were collected from two fields during the 2004 and
2005 growing seasons. These two data sets were selected to re-
present a high range of soil salinity, which allows evaluating a wide
variety of crops with different soil salinity tolerances. The first data
set consists of 316 points with a minimum soil salinity value of
2:38 dS=m, a maximum value of 41:23 dS=m, and a variance of
42:21 dS=m. The second data set consists of 136 points with a min-
imum soil salinity value of 3:04 dS=m, a maximum soil salinity
value of 31:26 dS=m, and a variance of 31:38 dS=m. Soil salinity
data were collected by using EM-38 electromagnetic probes. The
location of the samples was determined by using global position
system (GPS) units. The EM-38 electromagnetic probes provide
vertical and horizontal readings, whereas the GPS units provide
X and Y coordinates for each sample point. Wittler et al. (2006)
developed a calibrated equation to convert the EM-38 electromag-
netic probe readings to electrical conductivity (dS=m) for the study
area. This equation was used in this study. Soil moisture content
and soil temperature were used for the soil salinity calibration equa-
tion. Eldeiry and Garcia (2008a) and Elderiy et al. (2008) provide a
detailed description of using EM-38 electromagnetic probes in
combination with GPS in collecting soil salinity. The evaluated
crops were selected to represent field, fruit, vegetable, and forage
crops. Three crops of each category were selected to represent high,
moderate, and low soil salinity tolerances. The following crops
were evaluated in this study: for field crops barley, sorghum,
and corn; for fruit crops, olive, apples, and strawberries; for veg-
etable crops, beets, tomatoes, and lettuce; and for forage crops, bar-
ley (i.e., hay), crested wheat grass, and alfalfa. Different scenarios
that used each of these crops were created on the basis of the soil
salinity thresholds for each crop. These scenarios provide growers
with a wide selection of crops in accordance with the level of soil
salinity in their fields. Other crops can be evaluated on the basis of

their similarity in soil salinity tolerance to one of the crops evalu-
ated in this study.

Table 1 shows the YP% and the corresponding soil salinity for
the selected crops from field, fruit, vegetable, and forage crops. The
YP% values on the basis of soil salinity levels were adapted from
Ayers and Westcot (1976). They mentioned that during the germi-
nation and seedling stages, soil salinity for barley should not ex-
ceed 4 to 5 dS=m, except for certain semi-dwarf varieties.
However, Storey and Jones (1978) mentioned that barley is most
sensitive to salinity at the germination and young seedling stages,
but it exhibits increased tolerance with age. Salinity tolerance at the
germination and seedling stages determines the stand density in the
field under saline conditions. Therefore, the effect of salinity on
barley during the germination and seedling stages can be mitigated
by increasing the seed density. Ayers and Westcot (1976) also men-
tioned that electrical conductivity should not exceed 3 dS=m for
beets during germination. Many crops have little tolerance for
salinity during the seed germination stage, but they have significant
tolerance during later growth stages. Table 1 shows the significant
effect of soil salinity on productivity. It also shows how some crops
can reach high productivity, whereas others barely grow under the
same conditions. For example, at a specific area of a field where
soil salinity is 8:0 dS=m, the expected yield of barley is 100%,
whereas the expected yield of apples would be between 50%
and 0%.

DK Equations

The study provides a brief description of the basic equations of DK.
A more comprehensive explanation can be found in Matheron
(1976), Journel and Huijbregts (1978), Yates et al. (1986a, b),
and Yates and Yates (1988).

To obtain the DK estimator, the original soil salinity data must
be transformed into a new variable, YðxÞ, with a standard normal
distribution in which pairs of sample values are bivariate normal.
The function ϕ½YðxÞ� that describes this transformation is

ϕ½YðxÞ� ¼ ZðxÞ ¼
X∞
k¼0

CkHk½YðxÞ� ð1Þ

where the values for YðxÞ are obtained by taking the inverse of
the data, YðxÞ ¼ ϕ�1½ZðxÞ�, and where Hk½YðxÞ� is a Hermite

Table 1. Soil Salinity Threshold Values (dS=m) of Different YP% for Selected Crops

Crop YP %

Common name Botanical name 100 100–90 90–75 75–50 50–0

Soil salinity (dS=m)

Barley Hordeum vulgare 8.0 10.0 13.0 18.0 28.0

Sorghum Sorghum bicolor 4.0 5.1 7.2 11.0 18.0

Corn Zea mays 1.7 2.5 3.8 5.9 10.0

Fruit crops

Olive Olea europaea 2.7 3.8 5.5 8.4 14

Apples Pyrus malus 1.7 2.3 3.3 4.8 8.0

Strawberries Fragaria spp. 1.0 1.3 1.8 2.5 4.0

Vegetable crops

Beets Beta vulgaris 4.0 5.1 6.8 9.6 15

Tomatoes Lycopersicon esculentum 2.5 3.5 5.0 7.6 12.5

Lettuce Lactuca sativa 1.3 2.1 3.2 5.2 9.0

Forage Crops

Barley (hay) Hordeum vulgare 6.0 7.4 9.5 13.0 20.0

Crested wheat grass Agropyron desertorum 3.5 6.0 9.8 16.0 28.5

Alfalfa Medicago sativa 2.0 3.4 5.4 8.8 15.5
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polynomial of order k. The C0
ks are the Hermitian coefficients,

which are determined by using the properties of orthogonality.
They are generally determined by using numerical integration,
as follows:

Ck ¼
1

k!
ffiffiffiffiffiffiffiffiffið2πÞp Xj

i¼1

wiϕðviÞHkðviÞ exp½�v2i =2� ð2Þ

where vi and wi are the abscissa and weight factors for Hermite
integration (Hochstrasser 1965).

The DK estimator is calculated from a sum of unknown func-
tions of the transformed sample values, YðxiÞ. Each unknown func-
tion, f i½YðxiÞ�, must depend on only one transformed value, YðxiÞ.
The DK estimator is calculated by using the following equation:

Z�
DKðxoÞ ¼

Xn
i¼1

f i½YðxiÞ� ¼
Xn
i¼1

X∞
k¼1

f ikHk½YðxiÞ� ð3Þ

where f i is the unknown function with respect to the transformed
variable and n is the number of samples.

An unbiased estimator with the minimum estimation variance
can be obtained by using the following equations:

Z�
DKðxoÞ ¼

XK
k¼0

CkH�
k ½YðxoÞ� ð4Þ

where

H�
k ½YðxoÞ� ¼

Xn
i¼1

bikHk½YðxiÞ� ð5Þ

The series in Eq. (4) has been truncated to K terms and bik are the
DK weights. The H�

k ½YðxoÞ� represents the estimated value of the
Kth Hermite polynomial at the estimation location. The sum of
these estimates, multiplied by the coefficient Ck [which transforms
YðxÞ into ZðxÞ], makes up the DK estimate at xo. To obtain an esti-
mated value for the Hermite polynomial, the DK weights, bik, must
be determined by solving the linear kriging equation for each k, as
follows:

Xn
i¼1

bikðρijÞk ¼ ðρojÞk: j ¼ 1; 2; 3;…; n ð6Þ

When k ¼ 0, Eq. (6) represents the unbiased condition (i.e., the
sum of the weights equals unity). The disjunctive kriging covari-
ance can be calculated by using the following equation:

σ2
DK ¼

XK
k¼1

k!C2
k

�
1�

Xn
i¼1

bikðρoiÞk
�

ð7Þ

An advantage of the DK method is that an estimate of the CP
can be calculated so that the value at an estimation site is greater
than an arbitrary critical value, yc. This CP is a useful means for
determining the risk of various management alternatives. The CP is
obtained by defining an indicator variable that is equal to unity if
YðxiÞ ≥ yc, and is zero otherwise (Yates et al. 1986a, b). This allows
the CP to be written by the conditional expectation and estimates
the CP as

P�
DKðxoÞ ¼ 1� GðycÞ þ gðycÞ

XK
k¼1

Hk�1ðycÞH�
k ½YðxoÞ�=k! ð8Þ

where GðycÞ and gðycÞ are the cumulative and probability density
functions, respectively, for a standard normal variable; H�

k ½YðxoÞ� is

determined by using Eq. (5). The estimated CP density function,
pdf �DKðxoÞ, is determined by taking the derivative of Eq. (8) with
respect to yc and is

pdf �DKðxoÞ ¼ gðuÞ
�
1þ

XK
k¼1

HkðuÞH�
K ½YðxoÞ�=k!

�
ð9Þ

Applying DK Technique on Soil Salinity Data Sets

Data Transformation

Data transformations should be performed before using DK. Trans-
formations make the data normally distributed in which pairs of
sample values are bivariate normal. Several transformation methods
exist and the appropriate method should be chosen. For all trans-
formations, the predictions are automatically back-transformed to
the original values before a map is produced. Many forms of trans-
formations exist such as the square-root transformation, which is a
special case of the Box-Cox transformation and is usually used
when data are counted; the log transformation, which is used
for data with a skewed distribution; the arcsine transformation,
which is used with data that is expressed proportions or percent-
ages; and the normal score transformation, which is used with sim-
ple kringing, disjunctive kringing, and cokriging. DK ranks a data
set from its lowest to highest values and matches these ranks to
equivalent ranks from a normal distribution. This data of the study
uses the normal score transformation because it is the best for the
DK technique. Fig. 2 shows the histogram plots of the observed and
transformed soil salinity data for the two data sets. Histograms can
provide information about the mode and its frequency (which is an
indication of the overall variation) and the shape of the distribution.
Both data sets are transformed by using normal score transforma-
tions. When the first data set was transformed, the mode value was
set to zero with a frequency of 60. The overall variation was be-
tween �3 and 3 dS=m and the distribution was normal. When the
second data set was transformed, the mode value was set to zero
with a frequency of 25. The overall variation was between �3 and
3 dS=m and the distribution was normal.

Fig. 2. Histograms of the collected and transformed soil salinity data
for the two data sets
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Generating CP Maps

An advantage of DK is its ability to generate CP maps so that a
value at an estimation site is greater than an arbitrary critical value.
CP maps are generated by specifying a threshold as a condition of
probability so that the values exceed (or do not exceed) the speci-
fied threshold. The level or quantity of the property that is being
studied must be known in order to use DK effectively. This value is
called the "cutoff level" or "critical level" and values of the property
that are larger than this level represent the event under investiga-
tion. The probability level that spurs a management action must
also be known. This is the critical probability level at which the
levels of the property under investigation are no longer tolerated
(Yates and Yates 1988). Maas and Hoffman (1977) concluded that
crops will generally be unaffected by salinity up to a certain thresh-
old, at which point the yield will begin to decrease linearly as the
soil salinity levels increase. This study used this correlation be-
tween soil salinity and crop productivity to produce CP maps
for YP% under different conditions of soil salinity thresholds. Each
crop has different thresholds that can determine its YP% levels on
the basis of its tolerance to soil salinity. For example, sorghum can
produce 100, 100–90, 90–75, 75–50, and 50–0 YP% when soil
salinity values do not exceed 4, 5.1, 7.2, 11, and 18 dS=m respec-
tively; corn can produce 100–90, 90–75, 75–50, and 50–0 YP%
when soil salinity values do not exceed 2.5, 3.8, 5.9, and
10 dS=m respectively. These soil salinity threshold values were
the conditions used to produce CP maps for different YP% of
the selected crops. For each condition, a CP map was generated
from 0% to 100% probability with 20% intervals. Therefore, to
generate a CP map of sorghum that reaches 90–75 YP%, the con-
dition must be set so that the soil salinity values do not exceed
7:2 dS=m. To generate similar CP maps for corn, the condition
should not exceed 3:8 dS=m. For soil salinity-sensitive crops such
as strawberries, a higher CP cannot be produced because the con-
dition requires a very low soil salinity. To produce a CP map for
strawberries that has a 100% YP, the condition must be set so that
soil salinity values do not exceed 1 dS=m.

Assessing Crop Productivity from CP Maps

The spatial analyst in ArcGIS software was used to reclassify the
resulting CP raster maps into six classes for each crop scenario with
each data set. These six classes of the CP maps represent data at
20% intervals from 0% to 100%. This was implemented in ArcGIS
by using the manual classification and by setting the category val-
ues as 0, 0.2, 0.4, 0.6, 0.8, and 1. Contour maps were used for visual
illustration and they were generated by using the ArcGIS surface
analysis option of the spatial analyst. The “tabulated area” option in
the ArcGIS toolbox was used to calculate the total area of each
class (i.e., to quantify the CP maps). When a condition was set
(e.g., soil salinity values that do not exceed 4 dS=m, which is a
condition for sorghum to have 100 YP%), the resulting CP map
has contour lines of probability from 0% to 100% with 20% inter-
vals that represent the 100 YP% of sorghum. The area within the
100% contour lines represents the area of the field that has a 100%
probability to produce 100% YP. Each threshold of a crop has one
scenario that produces a specific CP map. For example, sorghum
has five scenarios, whereas corn has only four scenarios on the ba-
sis of the soil salinity tolerance of each crop (i.e., corn is in the non-
100 YP% class). The following is an example of how the areas of
different contour lines are calculated for a CP map that has a con-
dition set so that the soil salinity values do not exceed 7:2 dS=m.
This is the condition needed for sorghum to have 90–75 YP%. The
area within the 100% contour line represents the area of the field
that has 100% probability to produce 90–75 YP%. The area within

the 100% and 80% contour lines represents the area of the field that
has a 80–100% probability to produce 90–75 YP%. The area within
the 80% and 60% contour lines represents the area of the field that
has a 60–80% probability to produce 90–75 YP%. After calculating
the areas of the different classes, each class area was divided by the
total area of the field to obtain the percentage of that class from the
total area of the field. To obtain the cumulative probability for each
scenario, the percentage of each class was multiplied by its prob-
ability and all cumulative probabilities were summed.

Model Evaluation

Cross-validation was used to evaluate the DK geostatistical model
for the different scenarios of the selected crops at different thresh-
olds. Cross-validation removes each data location one at a time,
predicts the associated data value, and compares the measured
and predicted values for all points. The statistics used in cross-
validation serve as diagnostics to indicate whether the performance
of the model is acceptable. The following statistical measures were
set to guarantee that the prediction is unbiased and as close as pos-
sible to the measured value, and guarantee that the variability of the
prediction is correctly assessed.
• The mean prediction error was used to check if the model is

unbiased (i.e., centered on the measured values). These values
should be near zero to guarantee that the model is unbiased.

• The mean prediction error depends on the scale of the data.
Therefore, the mean standardized prediction error was also used
to check whether the model is unbiased. These values should be
close to zero to guarantee the model is unbiased.

• The root-mean-square prediction error was used to check
whether the prediction is close to the measured values. The
smaller the root-mean-square prediction error, the closer is the
prediction to the measured value.

• The variability was assessed in the following two ways:
1. By comparing the average standard error with the root-

mean-square prediction error. If the values are similar, then
the variability in the prediction is correctly assessed. If the
average standard error is greater than the root-mean-square
prediction error, then the variability of the predictions is
overestimated. If the average standard error is less than the
root-mean-square prediction error, then the variability of the
predictions is underestimated.

2. By evaluating the root-mean-square standardized error value.
If it is close to 1, then the variability of the prediction is cor-
rectly assessed. If it is greater than 1, then the variability of
the prediction is underestimated. If it is less than 1, then the
variability of the prediction is overestimated.

Results

This section will discuss the use of the DK technique as a tool
for the management of soil salinity and yield to achieve maximum
productivity under existing soil salinity conditions. Through the
DK technique, three examples of CP maps of YP% at different soil
salinity thresholds are presented that represent a sensitive crop
(strawberries), a moderate sensitive crop (corn), and a moderate
tolerant crop (sorghum). These examples are discussed and evalu-
ated later to demonstrate the variation in the probability of
YP% within a field. The areas within the CP contours for all se-
lected crops are tabulated to evaluate the quantity of variation in the
probability of YP% at different zones. The cumulative probability
of the whole field for each scenario is calculated to compare the
probabilities to reach different YP% for all selected crops. Some
recommendations and guidelines for growers are subsequently
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presented on the basis of outcomes of this study to help growers
select specific crops or to use agrochemicals more efficiently in
different zones in their fields.

Figs. 3–5 show three examples of CP maps of YP% at different
soil salinity thresholds that use the first data set to represent a sen-
sitive crop (strawberries) and a moderate sensitive crop (corn). The
purpose of these three examples is to show the variation in the prob-
ability of YP% for different zones in fields when planting different
crops with different soil salinity tolerances. Contour maps display
the CP for which each line is labeled with its YP% value. The area
within two contour lines represents the area of the field that has the
range of probability of these two contours to reach a specific YP%.

The first example (Fig. 3) shows the scenario of planting a sensitive
crop (strawberries) with the highest probability of productivity of
less than 75%. The soil salinity thresholds of ≤ 2:5 dS=m and
≤ 4 dS=m were used as conditions to produce probability maps of
75–50 of YP% and 50–0 of YP%, respectively, for strawberries.
Fig. 3(a) shows that the contour lines with low probabilities cover
most of the field; therefore, the probability that strawberries can
reach 75–50 YP% are very limited with a condition of soil salinity
≤ 2:5 dS=m. The maximum probability that strawberries can reach
75–50 YP% is 71%, which is represented by a very small area at the
bottom of the field. Fig. 3(b) shows a greater probability [than that
in Fig. 3(a)] that strawberries can reach 50–0 YP% with a condition

Fig. 3. CP maps of YP% of strawberries at different soil salinity thresholds, obtained by using the first data set

Fig. 4. CP maps of YP% of corn at different soil salinity thresholds, obtained by using the first data set
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of soil salinity ≤ 4 dS=m. The contour lines with high probabilities
cover significant areas of the field.

The second example (Fig. 4) shows the scenario of planting a
moderate sensitive crop (corn) with the highest probability of pro-
ductivity of less than 100%. The soil salinity threshold of ≤ 2:5,
≤ 3:8, ≤ 5:9, and ≤ 10 dS=m the conditions used to produce prob-
ability maps of 100–90, 90–75, 75–50, and 50–0 of YP% of corn,
respectively. Fig. 4(a) is similar to Fig. 3(a), indicating that corn can
reach 100–90 YP% under the same condition that strawberries can
reach 75–50 YP%.

The third example (Fig. 5) shows the scenario of planting a
moderate tolerant crop (sorghum) with the highest probability of
productivity of 100%. The soil salinity threshold of ≤ 4:0,
≤ 5:1, ≤ 7:2, ≤ 11:0, and ≤ 18:0 dS=m were used as conditions
to produce probability maps of 100, 100–90, 90–75, 75–50, and

50–0 of YP% of sorghum, respectively. Fig. 5 reflects the fact that
sorghum is one of the moderate tolerant crops to salinity. There are
significant areas representing the 100% of the YP%, which starts
with a soil salinity threshold of ≤ 4:0 dS=m. The areas of high per-
centages continue to increase gradually with the increase of the soil
salinity thresholds, whereas the areas of low productivity keep de-
creasing throughout the five parts of the figure. Fig. 5(a) is similar
to Fig. 3(b), which means that under the condition of soil salinity
≤ 4:0 dS=m, sorghum can reach 100 YP%, whereas strawberries
can reach 50 YP% at its maximum capacity. Figs. 5(d) and 5(e)
show that under the conditions of soil salinity ≤ 11:0 and
≤ 18:0 dS=m, in which the productivity of the majority of crops
is very low, sorghum can reach 75–50 and 50–0 YP% respectively.
This is shown by the contour lines of high percentages (100% and
80%) that cover large areas of the field.

Fig. 5. CP maps of YP% of sorghum at different soil salinity thresholds, obtained by using the first data set
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Tables 2 and 3 show the areas with different CP that reach differ-
ent YP% for all crop scenarios for both data sets. These tables
provide a quantitative means of presenting the variation in the prob-
ability of YP%. Both tables show that the areas within the 100% CP
contour lines increase, whereas the areas within the 0% CP contour
lines decrease with decreasing YP%. This sequence of increase or
decrease does not occur for the areas within contour lines between
100% and 0% of CP (i.e., 80%, 60%, 40%, and 20%). For the sce-
nario of planting sorghum in Table 3 for the first data set, the areas
within the contour lines of 100% CP increase (8, 11, 25, 62, and 88)
as the YP% decrease (100, 100–90, 90–75, 75–50, and 50–0). For
the same scenario, the areas within the contour lines of 0% CP de-
crease (16, 13, 4, 1, 0). However, the areas close to the 0% CP tend
to decrease and the areas close to the 100% CP tend to increase.
A transition zone exists among the areas that have a tendency to
decrease and the areas that have a tendency to increase. This in-
crease or decrease of the areas within contour lines with magni-
tudes between 100% and 0% CP depends on the values of the
collected soil salinity data, the locations of the areas, and the soil
salinity threshold of each scenario.

Table 4 shows the cumulative probability of YP% for the whole
field, which includes all zones of variable productivity. The CP%
increases with the increase of the soil salinity threshold values
(i.e., the decrease of YP%). For sorghum, the first data set shows
that under the soil salinity thresholds of ≤ 4, ≤ 5:1, ≤ 7:2, ≤ 11, and
≤ 18 dS=m, the cumulative probability for the whole field can
reach 34.7, 43.2, 64.1, 85.1, and 96.1 to achieve 100, 100–90,

Table 2. Areas of Different Zones with Different Conditional Probabilities
for All Scenarios of Selected Crops under Different Soil Salinity
Thresholds for the First Data Set

Conditional probabilities

YP (%) 100% 80% 60% 40% 20% 0%

Barley

100 38.7 22.5 14.5 11.8 9.6 2.8

100–90 54.5 18.0 12.7 9.2 3.8 1.8

90–75 70.0 16.2 7.8 3.0 2.7 0.2

75–50 87.8 7.1 3.0 2.0 0.1 0.0

50–0 94.5 4.4 1.1 0.0 0.0 0.0

Corn

100 0.0 0.0 0.0 0.0 0.0 0.0

100–90 0.0 0.1 2.1 7.5 47.0 43.3

90–75 7.1 5.1 8.8 21.4 40.9 16.8

75–50 14.4 15.8 22.2 20.4 17.7 9.5

50–0 54.5 18.0 12.7 9.2 3.8 1.8

Apples

100 0.0 0.0 0.0 0.0 0.0 0.0

100–90 0.0 0.0 0.0 0.0 0.0 0.0

90–75 4.2 5.5 6.1 16.7 48.5 19.1

75–50 10.0 6.7 15.5 26.2 27.7 13.8

50–0 38.7 22.5 14.5 11.8 9.6 2.8

Beets

100 7.8 5.3 10.0 22.6 38.2 16.2

100–90 10.8 8.1 17.6 26.0 24.6 12.9

90–75 21.2 23.1 20.4 14.9 14.7 5.7

75–50 51.9 18.9 12.7 10.1 4.4 2.0

50–0 78.0 13.7 4.0 2.8 1.4 0.0

Table 2. (Continued.)

Conditional probabilities

YP (%) 100% 80% 60% 40% 20% 0%

Lettuce

100 0.0 0.0 0.0 0.0 0.0 0.0

100–90 0.0 0.0 0.0 0.0 0.0 0.0

90–75 3.4 5.6 5.7 15.2 49.9 20.1

75–50 11.3 8.6 18.2 25.9 23.5 12.4

50–0 49.3 19.8 13.0 10.6 5.2 2.2

Crested wheat grass

100 5.2 5.2 6.8 18.2 46.3 18.3

100–90 15.0 17.2 22.3 19.4 16.9 9.2

90–75 54.5 18.0 12.7 9.2 3.8 1.8

75–50 81.0 11.9 3.4 2.8 0.9 0.0

50–0 95.0 4.1 0.8 0.0 0.0 0.0

Sorghum

100 7.8 5.3 10.0 22.6 38.2 16.2

100–90 10.8 8.1 17.6 26.0 24.6 12.9

90–75 25.5 24.0 18.7 13.8 13.5 4.5

75–50 62.2 16.5 11.4 5.7 3.2 1.0

50–0 87.8 7.1 3.0 2.0 0.1 0.0

Pomegranate

100 0.1 2.6 5.8 7.7 51.5 32.3

100–90 7.1 5.1 8.8 21.4 40.9 16.8

90–75 12.0 9.7 19.2 25.3 22.1 11.8

75–50 42.4 21.6 14.1 11.5 7.7 2.6

50–0 74.3 15.1 5.7 2.8 2.2 0.0

Strawberries

100 0.0 0.0 0.0 0.0 0.0 0.0

100–90 0.0 0.0 0.0 0.0 0.0 0.0

90–75 0.0 0.0 0.0 0.0 0.0 0.0

75–50 0.0 0.1 2.1 7.5 47.0 43.3

50–0 7.8 5.3 10.0 22.6 38.2 16.2

Tomatoes

100 0.0 0.1 2.1 7.5 47.0 43.3

100–90 5.2 5.2 6.8 18.2 46.3 18.3

90–75 10.5 7.5 16.9 26.1 25.8 13.2

75–50 30.8 23.9 16.9 12.7 12.3 3.3

50–0 68.5 16.4 8.7 3.2 2.9 0.3

Barley (Hay)

100 15.0 17.2 22.3 19.4 16.9 9.2

100–90 29.4 23.8 17.5 13.0 12.7 3.6

90–75 51.4 19.1 12.8 10.2 4.6 2.1

75–50 70.0 16.2 7.8 3.0 2.7 0.2

50–0 90.4 5.4 3.2 1.0 0.0 0.0

Alfalfa

100 0.0 0.0 0.0 0.0 0.0 0.0

100–90 4.8 5.3 6.4 17.6 47.2 18.6

90–75 12.0 9.7 19.2 25.3 22.1 11.8

75–50 45.2 20.9 13.8 11.0 6.6 2.4

50–0 80.9 11.8 3.4 2.8 0.9 0.0
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90–75, 75–50, and 50–0% YP, respectively. However, for the sec-
ond data set the cumulative probability for the whole field can reach
61.8, 68.4, 78, 88, and 97.4 to achieve the same YP%s. For corn,
the first data set shows that under the soil salinity thresholds values
of ≤ 2:5, ≤ 3:8, ≤ 5:9, ≤ 10 dS=m, the cumulative probability for
the whole field can reach 13.7, 33.1, 52, and 80.9 to achieve 100–
90, 90–75, 75–50, 50–0% YP, respectively. However, in the second
data set the cumulative probability for the whole field can reach 0,
60.5, 73.4, 85.4 to achieve the same YP%s (i.e., no 100–90 YP%
exists in the second data set).

Model Evaluation

Tables 5 and 6 show the cross-validation parameters used to evalu-
ate the DK geostatistical model. The prediction errors of the mean,
root-mean-square (RMS), average standard error (ASE), mean
standardized (MS), and root-mean-square standardized (RMSS)
were used as cross-validation parameters. These parameters were
obtained for each scenario of the selected crops at multiple soil
salinity thresholds. The mean and MS prediction errors were used
to evaluate whether the model is unbiased or biased. Tables 5 and 6
show that the mean and the MS prediction errors are nearly zero for
all scenarios in both data sets. This indicates that the DK model is
unbiased (i.e., the prediction values are centered on the measured
values for all scenarios.) The RMS prediction errors were used to
check how close the predicted values were to the measured values.
The smaller the error, the closer the predicted values were to the

Table 3. Areas of Different Zones with Different Conditional Probabilities
for All Scenarios of the Selected Crops under Different Soil Salinity
Thresholds for the Second Data Set

Conditional probabilities

YP (%) 100% 80% 60% 40% 20% 0%

Barley

100 62.0 11.2 7.8 7.5 6.4 5.2

100–90 71.5 8.5 7.2 3.9 6.1 2.8

90–75 82.7 5.8 3.4 4.1 4.0 0.0

75–50 91.6 4.6 2.7 1.1 0.0 0.0

50–0 97.3 2.6 0.1 0.0 0.0 0.0

Corn

100 0.0 0.0 0.0 0.0 0.0 0.0

100–90 0.0 0.0 0.0 0.0 0.0 0.0

90–75 40.9 11.0 6.2 8.0 19.3 14.5

75–50 57.3 5.3 10.2 9.0 10.7 7.5

50–0 71.5 8.5 7.2 3.9 6.1 2.8

Apples

100 0.0 0.0 0.0 0.0 0.0 0.0

100–90 0.0 0.0 0.0 0.0 0.0 0.0

90–75 20.5 15.1 10.1 7.5 21.9 25.0

75–50 49.7 8.2 5.8 10.3 15.4 10.6

50–0 62.0 11.2 7.8 7.5 6.4 5.2

Sugar beets

100 42.7 10.6 5.7 8.7 18.9 13.5

100–90 51.8 6.8 7.0 10.0 14.4 10.0

90–75 59.8 9.7 8.7 7.2 8.4 6.2

75–50 69.5 8.9 7.2 4.9 6.0 3.5

50–0 85.9 3.8 3.6 4.8 2.0 0.0

Lettuce

100 0.0 0.0 0.0 0.0 0.0 0.0

100–90 0.0 0.0 0.0 0.0 0.0 0.0

90–75 0.0 0.0 0.0 0.0 0.0 0.0

75–50 51.8 6.8 7.0 10.0 14.4 10.0

50–0 68.4 9.2 6.9 5.6 6.0 3.8

Crested wheat grass

100 33.2 12.1 7.8 6.6 20.2 20.1

100–90 57.7 6.0 10.0 8.8 10.3 7.3

90–75 70.5 8.7 7.3 4.3 6.0 3.1

75–50 87.7 3.9 3.6 4.1 0.7 0.0

50–0 99.6 0.4 0.0 0.0 0.0 0.0

Sorghum

100 42.7 42.7 42.7 42.7 42.7 42.7

100–90 51.8 51.8 51.8 51.8 51.8 51.8

90–75 60.2 60.2 60.2 60.2 60.2 60.2

75–50 75.1 75.1 75.1 75.1 75.1 75.1

50–0 91.6 91.6 91.6 91.6 91.6 91.6

Pomegranate

100 0.0 0.0 0.0 0.0 0.0 0.0

100–90 40.9 40.9 40.9 40.9 40.9 40.9

90–75 53.9 53.9 53.9 53.9 53.9 53.9

Table 3. (Continued.)

Conditional probabilities

YP (%) 100% 80% 60% 40% 20% 0%

75–50 65.3 65.3 65.3 65.3 65.3 65.3

50–0 84.6 84.6 84.6 84.6 84.6 84.6

Strawberries

100 0.0 0.0 0.0 0.0 0.0 0.0

100–90 0.0 0.0 0.0 0.0 0.0 0.0

90–75 0.0 0.0 0.0 0.0 0.0 0.0

75–50 0.0 0.0 0.0 0.0 0.0 0.0

50–0 42.7 42.7 42.7 42.7 42.7 42.7

Tomatoes

100 0.0 0.0 0.0 0.0 0.0 0.0

100–90 33.2 33.2 33.2 33.2 33.2 33.2

90–75 50.6 50.6 50.6 50.6 50.6 50.6

75–50 60.7 60.7 60.7 60.7 60.7 60.7

50–0 77.1 77.1 77.1 77.1 77.1 77.1

Barley (Hay)

100 57.7 57.7 57.7 57.7 57.7 57.7

100–90 60.7 60.7 60.7 60.7 60.7 60.7

90–75 68.4 68.4 68.4 68.4 68.4 68.4

75–50 82.7 82.7 82.7 82.7 82.7 82.7

50–0 91.6 91.6 91.6 91.6 91.6 91.6

Alfalfa

100 0.0 0.0 0.0 0.0 0.0 0.0

100–90 26.1 26.1 26.1 26.1 26.1 26.1

90–75 51.8 51.8 51.8 51.8 51.8 51.8

75–50 66.9 66.9 66.9 66.9 66.9 66.9

50–0 87.6 87.6 87.6 87.6 87.6 87.6
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measured values. The values of the RMS prediction errors in both
tables were small and close to zero, indicating that the DK model
was successful in making the predicted values as close as possible
to the observed values. However, the values in Table 6 for the sec-
ond data set are slightly less than the corresponding values of the
first data set, which indicates that the DK model was more success-
ful when using the second data set, rather than the first data set. Two
methods were used to assess whether the variability in the predic-
tions is correct, overestimated, or underestimated. In the first
method, the closer the values of the ASE that are to the values
of the RMS prediction errors, the better the assessment of the vari-
ability in the predictions. This is clear for all scenarios. This indi-
cates that the predictions correctly assessed the variability. In the
second metohd, the values of the RMSS prediction errors should be
1 to correctly assess the variability. This is clear for most scenarios.
Only in a few scenarios did the RMSS prediction errors exceed 1.
This occurred for barley at YP% < 75%, sorghum at YP% < 50%,
barley (hay) at YP% < 50%, crested wheat grass at YP% < 75%,
and alfalfa at YP% is < 75%. This indicates that the DK model
underestimates the variability for these few scenarios.

Advantages and Disadvantages of DK
DK which is a nonlinear kriging technique has several advantages
over linear estimation methods. The first advantage is that it pro-
vides a more accurate estimate of the property of interest and can
generate an estimate of the CP for that property (Yates and Yates

Table 4. Cumulative CP% of the Whole Field for the Two Data Sets at
Different Levels of Soil Salinity Thresholds (Different YP%) for All
Scenarios of the Selected Crops

YP (%)

CP% for the whole field

First data set Second data set

Barley

100 72.1 79.9

100–90 80.9 85.4

90–75 89.4 91.8

75–50 96.1 97.4

50–0 98.7 99.4

Corn

100 0.0 0.0

100–90 13.7 0.0

90–75 33.1 60.5

75–50 52.0 73.4

50–0 80.9 85.4

Apples

100 0.0 0.0

100–90 0.0 0.0

90–75 28.6 46.0

75–50 40.7 66.9

50–0 72.1 79.9

Beets

100 34.7 61.8

100–90 43.2 68.4

90–75 60.8 77.3

75–50 79.5 84.1

50–0 92.8 93.3

Lettuce

100 0.0 0.0

100–90 0.0 0.0

90–75 27.4 0.0

75–50 44.2 68.4

50–0 78.1 83.4

Crested wheat grass

100 30.0 54.2

100–90 53.3 74.0

90–75 80.9 84.8

75–50 93.9 94.8

50–0 98.8 99.9

Sorghum

100 34.7 34.7

100–90 43.2 43.2

90–75 64.1 64.1

75–50 85.1 85.1

50–0 96.1 96.1

Pomegranate

100 19.0 19.0

100–90 33.1 33.1

90–75 45.8 45.8

Table 4. (Continued.)

YP (%)

CP% for the whole field

First data set Second data set

75–50 74.3 74.3

50–0 91.3 91.3

Strawberries

100 0.0 0.0

100–90 0.0 0.0

90–75 0.0 0.0

75–50 13.7 13.7

50–0 34.7 34.7

Tomatoes

100 13.7 13.7

100–90 30.0 30.0

90–75 42.2 42.2

75–50 67.6 67.6

50–0 88.7 88.7

Barley (Hay)

100 53.3 53.3

100–90 66.7 66.7

90–75 79.3 79.3

75–50 89.4 89.4

50–0 97.0 97.0

Alfalfa

100 0.0 0.0

100–90 29.4 29.4

90–75 45.8 45.8

75–50 75.9 75.9

50–0 93.7 93.7
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1988). The second advantage is that DK produces CP maps that
can be used as an input to a management decision-making model
that provides a quantitative means of determining whether man-
agement actions are necessary (Yates and Yates 1988). The third
advantage is that the DK technique provides important implications
in aiding management decisions by providing growers with a quan-
titative input that can be used to evaluate the variability of crop
productivity in different zones in fields. The fourth advantage is
that DK performs better than IK because the continuous Hermite
transform in DK retains all information from the original data,
whereas the transform in other techniques such as IK uses discrete
transformations that inevitably loses information. The only disad-
vantage in using DK is the increased computational time (Yates
et al. 1986a).

Discussion
It has become imperative to explore the potential of increasing the
food production from saline lands because of the increasing pres-
sure from growing populations. Thus, combating land salinization
problems through adopting salinity and crop management strate-
gies is vital for food security. Plants vary widely in their salinity
tolerance. A method to address the soil salinity problem is to select
and plant salt-tolerant crops in saline soil areas. This paper intro-
duces a technique to determine how to live with salinity in its cur-
rent condition without leaching the soil salinity or performing other
soil reclamation efforts. The critical or threshold soil salinity value
is the value beyond which a crop’s productivity is negatively af-
fected. In this study, the threshold values were the input values
(i.e., the conditional probability information) used in the DK
technique to generate CP maps for YP% under different conditions

Table 5. Cross-Validation Parameters for Selected Crops at Different
Salinity Thresholds for the First Data Set

Mean RMS ASE MS RMSS

Barley

100 0.01 0.36 0.38 0.03 0.94

100–90 0.01 0.34 0.36 0.02 0.95

90–75 0.01 0.30 0.30 0.03 0.98

75–50 0.01 0.21 0.22 0.03 0.96

50–0 0.00 0.15 0.16 0.03 0.98

Corn

100 — — — — —
100–90 0.00 0.19 0.19 0.02 1.01

90–75 0.00 0.32 0.34 0.01 0.92

75–50 0.00 0.39 0.39 0.01 1.00

50–0 0.01 0.33 0.35 0.02 0.95

Apple

100 — — — — —
100–90 — — — — —
90–75 0.00 0.29 0.32 0.01 0.91

75–50 0.00 0.35 0.37 0.00 0.95

50–0 0.01 0.36 0.38 0.03 0.94

Beet

100 0.00 0.33 0.35 �0:01 0.94

100–90 0.00 0.37 0.38 0.00 0.98

90–75 0.00 0.39 0.39 0.02 0.99

75–50 0.01 0.34 0.36 0.02 0.97

50–0 0.01 0.25 0.27 0.03 0.94

Lettuce

100 — — — — —
100–90 — — — — —
90–75 0.00 0.28 0.31 0.01 0.91

75–50 0.00 0.37 0.38 0.00 0.98

50–0 0.01 0.35 0.37 0.02 0.95

Crested wheat grass

100 0.01 0.29 0.33 �0:01 0.89

100–90 0.01 0.39 0.39 0.01 1.00

90–75 0.01 0.33 0.36 0.02 0.95

75–50 0.01 0.24 0.26 0.03 0.92

50–0 0.00 0.14 0.15 0.03 0.97

Sorghum

100 0.00 0.33 0.35 �0:01 0.94

100–90 0.00 0.37 0.38 0.00 0.98

90–75 0.01 0.38 0.39 0.02 0.97

75–50 0.01 0.32 0.33 0.02 0.96

50–0 0.01 0.21 0.22 0.03 0.96

Pomegranate

100 0.00 0.23 0.24 �0:01 0.91

100–90 0.00 0.32 0.34 0.01 0.92

90–75 0.00 0.38 0.38 0.00 0.98

75–50 0.01 0.35 0.38 0.02 0.93

50–0 0.01 0.28 0.29 0.03 0.99

Table 5. (Continued.)

Mean RMS ASE MS RMSS

Strawberry

100 — — — — —
100–90 — — — — —
90–75 — — — — —
75–50 0.00 0.19 0.19 0.02 1.01

50–0 0.00 0.33 0.35 0.01 0.94

Tomato

100 0.00 0.19 0.19 0.02 1.01

100–90 0.00 0.29 0.33 �0:01 0.87

90–75 0.00 0.36 0.38 0.00 0.96

75–50 0.01 0.37 0.39 0.02 0.96

50–0 0.01 0.30 0.31 0.02 0.97

Barley (Hay)

100 0.01 0.39 0.39 0.01 1.00

100–90 0.01 0.38 0.39 0.02 0.96

90–75 0.01 0.35 0.36 0.02 0.96

75–50 0.01 0.30 0.30 0.03 0.98

50–0 0.00 0.19 0.21 0.03 0.93

Alfalfa

100 — — — — —
100–90 0.00 0.30 0.32 0.01 0.91

90–75 0.00 0.38 0.38 0.00 0.98

75–50 0.01 0.35 0.37 0.02 0.94

50–0 0.01 0.24 0.26 0.03 0.92
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of soil salinity thresholds. The CP maps can then be used as a quan-
titative method for making management decisions.

If the CP information is available, nonlinear kriging techniques
can be used as a quantitative method for making management de-
cisions for soil salinity and yield. Nonlinear kriging techniques in-
clude IK (which involves a nonlinear transformation of the data to a
discrete variable) and DK (which involves a nonlinear transforma-
tion of the data to a continuous variable). Of the previous studies
that used non-linear kriging techniques and targeted soil salinity
and crop yield management, the findings of Eldeiry and Garcia
(2011) are the closest to the findings of the current study, to the
best of the authors’ knowledge. Eldeiry and Garcia applied the
IK technique by using indicator variograms to evaluate different
scenarios of crops and salinity levels; From the variograms they
generated maps showing the expected YP%. Their results show that
IK can be used to generate guidance maps that divide fields into
areas of expected YP% on the basis of soil salinity thresholds
for different crops. In this paper, the DK technique provided un-
biased estimates of the CP so that the true value of the property
of interest does not exceed a defined threshold. The results of this
study show that the CP maps generated by using the DK technique
provide an accurate characterization and quantification of the dif-
ferent areas of a field. CP maps were used to assess the expected YP
% of fields for several crops under multiple soil salinity thresholds.
The methodologies used in the IK and DK techniques differ; how-
ever, both techniques can be used as management decision tools to
manage the productivity under current soil salinity conditions. Both
techniques provide knowledge of the YP% of different areas. By
using the knowledge of YP% at different areas of a field, a decision
can be made to manage the productivity of these areas by selecting

Table 6. Cross-Validation Parameters for Selected Crops at Different
Salinity Thresholds for the Second Data Set

Mean RMS ASE MS RMSS

Barley

100 0.01 0.22 0.27 0.02 0.81

100–90 0.01 0.20 0.25 0.02 0.80

90–75 0.01 0.19 0.21 0.04 0.89

75–50 0.00 0.21 0.14 0.02 1.47

50–0 0.00 0.13 0.09 0.01 1.50

Corn

100 — — — — —
100–90 — — — — —
90–75 0.01 0.20 0.30 0.02 0.68

75–50 0.01 0.24 0.28 0.02 0.86

50–0 0.01 0.20 0.25 0.02 0.80

Apple

100 — — — — —
100–90 — — — — —
90–75 0.00 0.30 0.28 0.00 1.05

75–50 0.00 0.19 0.29 0.01 0.65

50–0 0.01 0.22 0.27 0.02 0.81

Beet

100 0.00 0.20 0.30 0.00 0.68

100–90 0.00 0.21 0.29 0.01 0.72

90–75 0.01 0.24 0.27 0.02 0.86

75–50 0.01 0.19 0.25 0.02 0.77

50–0 0.00 0.20 0.20 0.01 1.03

Lettuce

100 — — — — —
100–90 — — — — —
90–75 �0:01 0.39 0.27 �0:03 1.47

75–50 0.00 0.21 0.29 0.01 0.72

50–0 0.01 0.18 0.26 0.02 0.71

Crested wheat grass

100 0.00 0.26 0.29 �0:02 0.86

100–90 0.01 0.24 0.28 0.02 0.85

90–75 0.01 0.20 0.25 0.02 0.81

75–50 0.00 0.22 0.18 0.01 1.21

50–0 0.00 0.09 0.06 �0:01 1.51

Sorghum

100 0.00 0.20 0.30 0.00 0.68

100–90 0.00 0.21 0.29 0.01 0.72

90–75 0.01 0.23 0.27 0.02 0.84

75–50 0.01 0.19 0.24 0.03 0.79

50–0 0.00 0.21 0.14 0.02 1.47

Pomegranate

100 — — — — —
100–90 0.01 0.20 0.30 0.02 0.68

90–75 0.00 0.21 0.29 0.02 0.72

75–50 0.01 0.19 0.26 0.02 0.73

50–0 0.00 0.21 0.20 0.02 1.01

Table 6. (Continued.)

Mean RMS ASE MS RMSS

Strawberry

100 — — — — —
100–90 — — — — —
90–75 — — — — —
75–50 — — — — —
50–0 0.00 0.20 0.30 0.00 0.68

Tomato

100 — — — — —
100–90 0.00 0.26 0.29 �0:02 0.86

90–75 0.00 0.20 0.29 0.01 0.69

75–50 0.01 0.23 0.27 0.02 0.83

50–0 0.00 0.20 0.23 0.03 0.88

Barley (Hay)

100 0.01 0.24 0.28 0.02 0.85

100–90 0.01 0.23 0.27 0.02 0.83

90–75 0.01 0.18 0.26 0.02 0.71

75–50 0.01 0.19 0.21 0.04 0.89

50–0 0.00 0.21 0.14 0.02 1.47

Alfalfa

100 �0:01 0.30 0.29 �0:02 1.03

100–90 0.00 0.21 0.29 0.01 0.72

90–75 0.01 0.18 0.26 0.02 0.69

75–50 0.00 0.22 0.18 0.01 1.21

50–0 0.00 0.22 0.18 0.01 1.21
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another crop or adjusting inputs such as fertilizer, seeding rates, and
herbicides.

Conclusions

Decisions are subject to error that are made on the basis of critical
thresholds, which use estimates of variability. DK converts these
errors to an estimated probability so that the true value exceeds
a given threshold, thereby giving decision makers a means to judge
the risk associated with a particular estimate. DK provides mini-
mum variance estimates of properties from nonlinear combinations
of spatially correlated sample data. It can also be used to estimate
the conditional probability that a certain critical threshold is
exceeded. This study used DK, a nonlinear kriging model, to pro-
vide an unbiased estimation of the conditional probability that a
given variable exceeds a threshold. DK assists in management
decisions by providing a quantitative input (i.e., CP maps) that can
be used to evaluate the variability of different areas in a field. The
results on the data show how the DK technique can generate valu-
able information for the growers to make decisions regarding which
crops to select or the need to make the most efficient use of agro-
chemicals. Efficient use of agrochemicals is beneficial for farmers
and for the environment. This study presented and discussed the
visual information of the variation in probability of productivity
in the different areas of a field, for different crop scenarios. This
information enables growers to visualize the variability of the
productivity in different areas of their fields. The information
was tabulated and discussed to provide growers with quantitative
information about the probability of the productivity of different
areas in their fields. This information enables growers to quantify
the variability of the productivity in different areas of their fields.
This study shows that the DK technique provides a tool to achieve
spatial optimization of farm management. This will increase pro-
ductivity or reduce the amount of agro-chemicals applied.
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