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Using Indicator Kriging Technique for Soil Salinity and
Yield Management
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Abstract: This paper presents a practical method to manage soil salinity and yield in order to obtain maximum economic benefits. The
method was applied to a study area located in the southeastern part of the Arkansas River Basin in Colorado where soil salinity is a
problem in some areas. The following were the objectives of this study: (1) generate classified maps and the corresponding zones of
uncertainty of expected yield potential for the main crops grown in the study area; (2) compare the expected potential productivity of
different crops based on the soil salinity conditions; and (3) assess the expected net revenue of multiple crops under different soil salinity
conditions. Four crops were selected to represent the dominant crops grown in the study area: alfalfa, corn, sorghum, and wheat. Six fields
were selected to represent the range of soil salinity levels in the area. Soil salinity data were collected in the fields using an EM-38 and
the location of each soil salinity sample point was determined using a global position system unit. Different scenarios of crops and salinity
levels were evaluated. Indicator variograms were constructed for each scenario to represent the different classes of percent yield potential
based on soil salinity thresholds of each crop. Indicator kriging (IK) was applied to each scenario to generate maps that show the expected
percent yield potential areas and the corresponding zones of uncertainty for each of the different classes. Expected crop net revenue for
each scenario was calculated and all the results were compared to determine the best scenarios. The results of this study show that IK can
be used to generate guidance maps that divide each field into areas of expected percent yield potential based on soil salinity thresholds for
different crops. Zones of uncertainty can be quantified by IK and used for risk assessment of the percent yield potential. Wheat and
sorghum show the highest expected yield potential based on the different soil salinity conditions that were evaluated. Expected net

revenue for alfalfa and corn are the highest under the different soil salinity conditions that were evaluated.
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Introduction

Soil salinity refers to the presence in the soil and water of various
electrolytic mineral solutes in concentrations that can be harmful
to many agricultural crops (Hillel 2000). Salts decrease the avail-
ability of water to plants due to increase osmotic potential and
have direct adverse effects on the plant metabolism (Douaik et al.
2004; Greenway and Munns 1980). Increasing soil salinity is off-
setting a good portion of the increased productivity achieved by
expanding irrigation (Postel 1999). On average, 20% of the
world’s irrigated lands are affected by salts, but this figure in-
creases to more than 30% in countries such as Egypt, Iran, and
Argentina (Ghassemi et al. 1995). Crop yield reduction in fields in
the Lower Arkansas Valley due to salinization is estimated to vary
between 0 and 75% with a total revenue loss ranging from $0 to
$750/ha based on 1999 crop prices (Gates et al. 2002).
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Geostatistical methods have been used widely for sampling
and mapping soil salinity. They provide means to study the het-
erogeneity of the spatial distribution of soil salinity (Pozdnyakova
and Zhang 1999). Kriging is a collection of linear regression tech-
niques that takes into account the stochastic dependence among
data (Olea 1991). Kriging remains the best choice as a spatial
estimation tool since it provides a single numerical value that is
best in some local sense (Deutsch and Journel 1998). The results
of spatial prediction generate reasonable estimates of soil salinity
regardless of what interpolation method was used (Triantafilis et
al. 2001). Kriging models estimate the values at unsampled loca-
tions by a weighted averaging of nearby samples where the cor-
relations among neighboring values are modeled using
variograms (Miller et al. 2007). Studies have shown that semi-
variograms of electrical conductivity (EC) can be a useful tool in
determining the spacing between soil samples for laboratory EC
determination (Utset et al. 1998). Samra and Gill (1993) used
kriging results to assess the variation of pH and sodium adsorp-
tion ratios associated with tree growth on a sodium-contaminated
soil.

The variogram is the key function in geostatistics as it is used
to fit a model of the spatial correlation of the observed phenom-
enon and provides a unique spatial study. Given a collection of
data, a variogram reveals the type of spatial structure inherent to
a spatial phenomenon. In addition, the variogram reveals the
amount of noise present in the data, known commonly as the
nugget (Carr et al. 1985). Recent research shows that this noise
can substantially mask prominent spatial autocorrelation and re-
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sult in what appears to be a purely random spatial process. When
a variogram is used to describe the correlation of different vari-
ables, it is called a cross variogram. Cross variograms are used in
cokriging. If the variable being analyzed is binary or represents
classes of values, this is referred to as indicator variograms. Non-
parametric geostatistical techniques such as indicator kriging (IK)
offer immeasurable power for analysis of data quality (Journel
1983). A careful selection of thresholds in assigning an indicator
function can yield an indicator variogram which reveals underly-
ing spatial autocorrelation. Problems arise when dealing with
highly variant phenomena where the data present long-tailed dis-
tributions with a coefficient of variation in the range of 2-5. Raw
variograms become extremely sensitive to tail data, and are basi-
cally useless (Journel 1983). Indicator variograms are not affected
by outliers, since they do not call for the data values themselves
but rather for their rank order (indicator values) with regard to a
given cutoff. Data are used through their rank order with regard to
a given cutoff, allowing for a more comprehensive structural
analysis, and are yet more robust with regard to outliers. The
influence of outliers is removed from the distribution and data
sensitivity to different thresholds can be uniquely studied. The
indicator approach, whereby the data are used through their rank
order, allows a nonparametric approach to study the bivariate dis-
tribution of the data (Journel 1983). This rich structural informa-
tion allows a nonparametric risk-qualified analysis of the data as
well as an estimation of local and global spatial distributions.

IK provides a nonparametric distribution estimated directly at
fixed thresholds by considering indicator transforms of condition-
ing data in the form of cumulative distribution functions (Rich-
mond 2002). The power of multivariable IK as a tool is that it is
flexible and can be modified to fit specific management or re-
search goals by modifying the critical threshold criteria (Smith et
al. 1993). IK makes no assumptions on the underlying invariant
distribution, and 0:1 indicator transformation of the data makes
the predictor robust to outliers (Cressie 1993). At an unsampled
location, the values estimated by IK represent a probability that
the value is less than a specified threshold. That is, the expected
value at the location derived from indicator data are equivalent to
the cumulative distribution function of the variable (Smith et al.
1993). Mapping of uncertainty zones for individual phases is one
advantage of using a geostatistical approach to characterize the
morphology of quantitative variables (Soares 1992). Smoothing
effects occurring around zero thickness investigation sites can be
reduced significantly by the use of a combined ordinary-IK ap-
proach (Marinoni 2003). Solow (1986) used simple IK to estimate
the conditional probability that a sample point belongs to one type
or another. Their results show that simple IK performed well, and
in some cases can be exact.

IK provides a way to use depth to water-table data to quantify
the probability of saturation and evaluate the predicted spatial
distributions of runoff generation risk (Lyon et al. 2006). Spatial
principal component analysis and IK were used to estimate the
geochemical distributions by using their statistical and spatial
properties (Panahi et al. 2004). Indicator variables and multilevel
thresholds were used to analyze the arsenic concentration prob-
ability in the coastal aquifer in Yun-Lin, Taiwan (Liu et al. 2004).
Using this technique allowed them to solve the problem of data
scarcity and provided multilevel thresholds in the probability es-
timation of contamination. IK geostatistics were also used suc-
cessfully to identify the areas where mercury concentration was
higher than the median in southern Portugal, and to produce an
index that combines mercury contamination across trophic levels
(Figueira et al. 2009). Mapping of uncertainty zones for indi-

vidual phases is one advantage of using a geostatistical approach
to characterize the morphology of quantitative variables (Soares
1992). Western et al. (1998) examined soil moisture patterns
through indicator semivariograms and showed good spatial struc-
ture for high soil moisture conditions.

IK has also been frequently applied to the pollution of soil by
heavy metals. For example, Smith et al. (1993) and Oyedele et al.
(1996) used multivariate IK to analyze the quality of soil; Lin et
al. (2002) applied IK to delineate the variation and pollution
sources of heavy metals in agricultural land; and Juang and Lee
(1998), Castrignano et al. (2000), and Van Meirvenne and Goo-
vaerts (2001) adopted multilevel-threshold IK to estimate the
probability distribution of heavy metal pollution in a field. Geo-
statistical indicator methods have also been applied in the litho-
logical classification of rocks (McCord et al. 1997; Fogg et al.
1999) and in the estimation of probability of contamination in
groundwater aquifers (Istok and Pautman 1996).

Several studies have been carried out using IK in soil science.
Bierkens and Burrough (1993a) showed the application of IK to
predict categorical soil data. Bierkens and Burrough (1993b) also
applied IK to water-table mapping and land suitability assess-
ment. Goovaerts (1994) compared the performance of cokriging,
simple kriging, and multiple indicator kriging (MIK) in predicting
soil quality indicators. Triantafilis et al. (2003) used MIK to pro-
duce conditional probability maps of deep drainage risk in an
irrigated cotton field in the Lower Gwydir Valley in southeastern
Australia. Triantafilis et. al (2004) used IK, MIK, and disjunctive
kriging to assess the current status and potential threat of soil
salinity using data from soil and water surveys in the Lower
Namoi Valley of northern New South Wales, Australia.

The geostatistical approach presented in this paper uses IK to
provide farmers with a tool to estimate the potential maximum
economic benefit under the current conditions of their fields.
Crops with different soil salinity tolerances have significantly dif-
ferent crop yield potential under the same soil salinity conditions.
Therefore, depending on the soil salinity conditions of a field,
some crops will have higher yields than others. A classified map
of expected yield potential based on soil salinity thresholds of
different crops can help in selecting the appropriate crop that
maximizes the potential yield for a specific area. In this research,
a set of scenarios generated from combinations of different crops
and fields was analyzed using the soil salinity data for each field.
Each field was classified into different thresholds to produce the
following crop yield potentials: 100, 90, 75, 50, <50 and >0, and
0%. Indicator variograms were constructed for each of the sce-
narios and IK was applied to each scenario to generate maps that
show the expected percent yield potential as well as zones of
uncertainty for different parts of each field. Expected crop net
economic revenue for each scenario was calculated. The expected
yield potential maps can be used by farmers to determine which
crop would maximize the yield and the economic benefits of their
fields under the current soil salinity conditions.

Data and Methodology

Study Area and Data Collection

The study area is located in the southeastern part of the Arkansas
River Basin in Colorado near the cities of Rocky Ford, Colorado
and La Junta, Colo. (Fig. 1). Farmers in this area are facing de-
creasing crop yields due in part to high levels of salinity in their
irrigation water. In some areas, land is being taken out of produc-
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Fig. 1. Study area in the southeastern part of the Arkansas River Basin in Colorado

tion due to unsustainable crop yields. This is due in part to the
fact that the Arkansas River is one of the most saline rivers in the
United States (Tanji 1990; Miles 1977). In a survey of the region,
68% of producers stated that high salinity levels were a signifi-
cant concern (Frasier et al. 1999). Farmland along the Lower
Arkansas River Basin has been continuously irrigated since the
1870s and began to develop shallow, saline water tables by the
beginning part of the 20th century (Miles 1977). Average water-
table depths in this region have risen toward the surface approxi-
mately 0.3-1.22 m between 1969 and 1994 which has only
exacerbated the salinity problems because of increasing amounts
of upflux of saline groundwater.

Several fields were selected to carry out the soil salinity as-
sessment in the study area. Soil salinity data were collected using
EM-38 electromagnetic probes and the location of the samples
was determined using global position system (GPS) units. The
EM-38 electromagnetic probes provide vertical and horizontal
readings while the GPS units provide X and Y coordinates for
each sample point. A calibrated equation, which was developed
for the study area by Wittler et al. (2006), was used to convert the
EM-38 electromagnetic probe readings to EC (dS/m). Soil mois-

Table 1. Description of the Fields of the Study Area and the Collected
Soil Salinity Samples

Area Number of soil

Field (ha)  salinity samples Minimum Maximum Mean
U.S.01 16.20 318 2.38 7.19 3.32
U.S.04  93.19 316 2.38 41.23 8.41

U.S.09 28.92 369 1.57 3.49 2.30
U.S.10 4.19 132 3.04 31.26 6.82
UsS.14 12.73 254 2.66 11.26 4.45
U.S.80  11.26 178 2.86 12.33 4.21

ture content and soil temperature were used for the calibration
equation. A detailed description of using the EM-38 electromag-
netic probe in combination with GPS in collecting soil salinity
can be found in Eldeiry and Garcia (2008) and Eldeiry et al.
(2008). Six fields were selected to represent the different soil
salinity ranges: low, moderate, and high.

Table 1 shows a description of the fields used in this study. The
table contains the area, number of samples, minimum, maximum,
and mean values of the soil salinity that were collected in each
field. These fields were selected to represent different soil salinity
ranges (low, medium, and high) since soil salinity is an important
factor which can significantly affect crop yield. Table 1 shows
that the selected fields represent a wide range of soil salinity
levels from 1.57 to 41.23 dS/m.

Soil Salinity Classification

Table 2 shows the percent yield potential and the corresponding
soil salinity EC (dS/m) for alfalfa, corn, sorghum, and wheat
(adapted from Ayers and Westcot 1976). Ayers and Westcot car-
ried out an experiment where soil salinity was measured based on
the electrical conductivity of the saturated paste extract (ECe)

Table 2. Yield Potential and the Corresponding Soil Salinity (dS/m) for
Selected Crops (Adapted from Ayers and Westcot 1976)

Yield potential (%), Soil salinity (dS/m)

Crop 100% 90% 75% 50% 0%
Corn 1.7 2.5 3.8 59 10.0
Alfalfa 2.0 34 54 8.8 16.0
Sorghum 4.0 5.1 72 11.0 18.0
Wheat 6.0 7.4 9.5 13.0 20.0
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taken from a root zone soil sample measured in dS/m. For barley
and wheat, during the germination and seedling stages, ECe
should not exceed 4 to 5 dS/m except for certain semidwarf va-
rieties. For beets, during germination, ECe should not exceed to 3
dS/m. Many crops have little tolerance for salinity during seed
germination, but significant tolerance during later growth stages.
The crops shown in Table 2 were sorted based on their tolerance
to soil salinity from low to high: corn, alfalfa, sorghum, and
wheat. Table 2 shows that wheat can reach up to 100% of yield
potential at a soil salinity of 6 dS/m while corn can only reach
50% of yield potential at a soil salinity of 5.9 dS/m.

Preparing the Data

The soil salinity data for each field were sorted and classified into
different thresholds to produce the following crop yield potential
classes: 100, 90, 75, 50, <50 and >0, and 0%. For each of these
six fields, the classification was done for each of the four selected
crops. For high soil salinity tolerant crops such as wheat or sor-
ghum, in fields with low soil salinity levels such as U.S.09, there
is no need for IK since the whole field has 100% expected yield
potential. However, with the same crops in fields with moderate
soil salinity levels, crops can reach a high yield potential from 75
to 100%, while classes with yield potential ranging from 0 to
100% can be present in fields with high soil salinity levels. For
crops with moderate and low soil salinity tolerance such as alfalfa
and corn, a wide range of yield potentials is represented in the
selected fields for this study.

Constructing the Indicator Variograms

From the data combinations of crops and fields, 24 scenarios were
created (combinations of four crops and six fields). For each sce-
nario, data were analyzed using the S+ statistical software pack-
age and the indicator variograms were decided based on the
number of classes or thresholds of yield potential for each sce-
nario. For example the scenario of planting alfalfa in field U.S.04
has five classes: 90, 75, 50, <50 and >0, and 0% of yield poten-
tial. The best model variogram among the exponential, Gaussian,
and spherical was chosen based on the smallest Akaike informa-
tion corrected criterion (AICC). AICC is a measure of the good-
ness of fit of an estimated statistical model. It is a tradeoff
between bias and variance in model construction. It is not a test of
the model in the sense of hypothesis testing; rather, it is a test
between models (a tool for model selection). AICC was defined
by McQuarrie and Tsai (1998) as

RSS n+k
AICC=In—+—— (1)
n n—-k-2

where RSS=residual sum of squares; k=number of parameters;
and n=number of samples.

Indicator variograms were constructed for each of the sce-
narios using the model with the smallest AICC value. Each phase
of the variograms represents one class of percent yield potential.
The indicator variograms contain six phases or less depending on
the tolerance of the crop and the soil salinity in the field. The
indicator variogram (Soares 1992) is defined as the probability
that x and x+h belong to different classes K;

1

y(h) = %E{E [Ki(x) —Ki(X+h)]2} (2)

where x and x+/ represent a pair of sample locations separated
by distance /2 and i=number of k classes of soil salinity.

Applying IK

IK was applied to each scenario to generate classified maps that
show the expected percent yield potential. The number of classes
in each map depends on the number of phases of the indicator
variograms of that scenario. One of the advantages of IK is that it
has the power to quantify the zones of uncertainty for different
parts of each field. Zones of uncertainty exist around the borders
of classes and these areas have the probability of belonging to
either of the classes. Assessing zones of uncertainty can be very
beneficial for the accuracy of the generated maps since it can
produce more information about the risk assessment. The essence
of the indicator approach is the binomial coding of soil salinity
data into either 1 or O depending upon its relationship to the
thresholds of soil salinity for each crop. For a given value of z(x)

)L if ) =z
’(X'Z")_{o if z(x) <z ®)

where z;=salinity threshold for a specific crop (Lyon et al. 2006).
More detailed description of IK can be found in Soares (1992).

Zones of Uncertainty

The indicator variable can be described as the probability of ex-
ceeding a given threshold. Therefore, the estimation of the indi-
cator variable at unsampled locations produces probability maps
(Reis et al. 2005b). Zones of uncertainty between soil salinity
classes can be obtained by identifying locations with low prob-
ability, for a given threshold, of belonging to a specific soil salin-
ity level. For example a zone of uncertainty can be defined as
being the lowest 25% of the probabilities of belonging to a par-
ticular soil salinity level. To generate a map of uncertainty, the
first thing to do is to obtain some information regarding the dis-
tribution of probabilities associated with each soil salinity class,
such as identifying the threshold representing the lowest 25% of
the probabilities.

Consider an attribute Z that must be conditionally simulated
and the information available consists of z values at n locations x;,
z(x;), and i=1,2,...,n. The uncertainty about the soil salinity
value at an unsampled location x is modeled by the conditional
cumulative distribution function (CCDF) of the random variable
Z(x)

F(x,z) = Prob{Z(x) = z(x)} (4)

The function F(.) represents the probability that the unknown soil
salinity does not exceed a threshold z. The CCDFs are modeled
using a nonparametric (IK) approach, which estimates the prob-
ability for a series of K threshold values z; discretizing the range
of variation of Z (Froideveux 1993; Saito and Goovaerts 2002;
Reis et al. 2005a):

F(x,z,) =Prob{Z(x)z,|(n)}, k=1,....,K (5)

where k=number of samples within a specific class K.

The calculated probabilities are recoded into 0 and 1 in order
to obtain binary maps with two levels, the areas with uncertainty
and the areas without uncertainty, while considering a confidence
interval.
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Table 3. AICC of the Exponential, Gaussian, and Spherical Variogram Models for IK when Evaluating Alfalfa, Corn, Sorghum, and Wheat as Possible

Crops
Alfalfa Corn
Field Spherical Exponential Gaussian Spherical Exponential Gaussian
U.S.01 55.7 55.6 55.0 72.3 72.4 72.0
U.S.04 65.6 46.8 44.4 68.0 48.5 46.9
U.S.14 63.9 58.5 61.0 67.6 67.7 68.8
Sorghum Wheat

U.S.01 61.5 61.5 54.5 N/A N/A N/A
U.S.04 64.0 60.3 60.3 84.0 84.2 84.0
U.S.14 62.5 62.4 63.3 64.5 64.6 64.5

Note: N/A=total area of the field has 100% yield potential.

Net Revenue

Expected crop net economic revenue for each scenario was cal-
culated based on the Colorado State University Extension (Agri-
culture and Business Management) 2007 crop budget estimates.
The total revenue includes the revenue of the crop without taking
into account the costs. The costs include the operations associated
with preharvest, harvest, property ownership and cost, and for
some crops, a factor payment. Net revenue is the revenue after the
costs are taken into account. The expected crop net economic
revenue can be used as guidance for the growers to determine
which crop would maximize the potential economic benefits from
their fields under the current soil salinity conditions.

n

Each field is composed of a number of areas according to soil
salinity classes. Each area produces a specific yield potential
based on its soil salinity class for each crop. The total revenue,
cost, and net revenue for alfalfa, corn, sorghum, and wheat are
based on the Colorado State University Extension (Agriculture
and Business Management) 2007 crop budget estimates. The crop
budget takes the averages and does not take into account the
distribution within each field. However, the actual net revenue of
each field depends on how many soil salinity classes are present
in each field and the yield potential percentage of each class for a
particular crop being considered. Therefore, the following equa-
tion is used to adjust the net revenue of each field:

E Net revenue X Area of class X % of class yield potential

i=1

Adjusted Net Revenue =

where n represents the number of different yield potential classes,
i.e., n represents five classes when field U.S.04 is planted with
alfalfa.

Model Validation

This study focused on three levels of soil salinity (low, moderate,
and high) and each level was represented by two fields. Out of
each set of two fields, one field was used to construct the indicator
variogram while the other was used for validation of the indicator
variogram. Four different scenarios of planting alfalfa, corn, sor-
ghum, and wheat were evaluated for each field. Therefore, four
different indicator variograms were constructed for each field, and
then applied to the other field in the same soil salinity level (vali-
dation field). Fields U.S.01, U.S.14, and U.S.04 were used to
construct the indicator variograms for low, moderate, and high
soil salinity levels, respectively. Fields U.S.09, U.S.80, and
U.S.10 were used for validation of the same levels of soil salinity,
respectively. The criteria used for selecting a field for constructing
the variogram or validating it was based on the range of soil
salinity in each of the two fields. The field with the larger soil
salinity range was chosen for constructing the indicator variogram

, (6)
Area of the field

while the other one was used for validation. Therefore, if the
validation field has fewer classes for indicator variograms, the
extra classes are removed.

Model Performance

IK performance with the different crops and fields is measured

using the following criteria:

1. Model precision: the RMS error (RMSE) is used to measure
the prediction precision (Triantafilis et al. 2001) and is de-

fined as
1« -
RMSE = -2.(Z,-7)) (6")
s

where Z;=observed value of the ith observation; Z:f is the
predicted value of the ith observation; and n=number of
points collected. The RMSE tends to place more emphases
on larger errors and, therefore, gives a more conservative
measure than the mean absolute error.

2. Smoothing effect: interpolation usually leads to a smoothing
of the observations and thus to a loss of variance. To assess
the ability of the interpolation method to preserve the vari-
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ance, the ratio of the variance of the estimated values to the
variance of the observed values is used (Haberlandt 2006):

_ Var[Z;(u)]

= ValZw)] )

The closer RVar is to 1, the better the ability of the interpo-
lation method to preserve the observed variance.

Model effectiveness: the effectiveness of the model was
evaluated using a goodness-of-prediction statistic, G (Agter-
berg 1984; Kravchenko and Bullock 1999; Guisan and Zim-
mermann 2000; Schloeder et al. 2001). The G value
measures how effective a prediction might be relative to that
which could have been derived by using the sample mean
(Agterberg 1984):

Table 4. Different Classes and Zones of Uncertainty for the Selected Fields Planted with Different Scenarios of Growing Alfalfa, Corn, Sorghum, and

Wheat Were Evaluated

U.S.01 U.S.04 U.S.09 U.S.10 U.S.14 U.S.80
Alfalfa
YP (%) A(ha) Unc A(ha) Unc A(ha) Unc A(ha) Unc A(ha) Unc A(ha) Unc
100 3.83 0
90 11.68 0.24 18.10 0.21 25.53 0.07 1.92 0.24 3.01 0.22 7.08 0.16
75 4.30 0.27 11.57 0.28 0.66 0.32 7.48 0.24 3.25 0.23
50 0.22 0.17 32.56 0.17 0.57 0.38 2.04 0.28 0.53 0.20
<50 20.54 0.17 0.72 0.23 0.20 0.32 0.40 0.25
0 0.33 0
Corn
YP (%) A(ha) Unc A(ha) Unc A(ha) Unc A(ha) Unc A(ha) Unc A(ha) Unc
100 1.98 0.15
90 16.89 0.17
75 5.98 0.20 20.56 0.20 10.04 0.17 2.33 0.25 5.29 0.26 8.57 0.15
050 8.04 0.19 18.54 0.15 0.43 0.27 6.11 0.18 2.08 0.21
<50 2.18 0.18 29.74 0.19 0.43 0.27 1.34 0.13 0.61 0.22
0 24.34 0 1.00 0
Sorghum
YP (%) A(ha) Unc A(ha) Unc A(ha) Unc A(ha) Unc A(ha) Unc A(ha) Unc
100 15.66 0.03 25.08 0.24 28.92 0 2.42 0.25 7.28 0.25 9.52 0.20
90 0.35 0.25 4.40 0.35 0.15 0.32 3.27 0.25 0.71 0.23
75 0.19 0.20 20.96 0.21 0.34 0.35 1.40 0.25 0.61 0.25
50 24.80 0.22 0.44 0.21 0.79 0.32 0.32 0.28
<50 10.85 0.18 0.72 0.24 0.09 0.29
0 7.09 0.24 0.11 0.30
Wheat
YP (%) A(ha) Unc A(ha) Unc A(ha) Unc A(ha) Unc A(ha) Unc A(ha) Unc
100 16.20 0 40.66 0.29 28.92 0 2.87 0.23 12.28 0.18 10.98 0.21
90 12.48 0.25 0.11 0.24 0.01 0 0.15 0.19
75 13.32 0.26 0.11 0.16 0.34 0.26 0.13 0.18
50 11.84 0.25 0.54 0.22 0.11 0.23
<50 9.06 0.28 0.56 0.24
0 5.83 0.22

Note: YP=yield potential and Unc=zone of uncertainty percentage.
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G=(1— > z-ZT E[Z,-—Z]Z) (8)
=1

i=1

Z is the sample mean. A G value equal to 1 indicates perfect
prediction, a positive value indicates a more reliable model
than if the sample mean had been used, a negative value
indicates a less reliable model than if the sample mean had
been used, and a value of zero indicates that the sample mean
should be used.

Results

This section presents the process of selecting the indicator vari-
ograms of IK based on the AICC statistical parameter. Examples
of IK maps for different scenarios of crops and fields are pro-
vided. Examples of zones of uncertainty are also presented to
quantify the risk associated with each of these zones. Finally, an
estimate of the net economic revenue for each of the scenarios is
provided.

Table 3 shows the AICC values of the exponential, Gaussian,
and spherical variogram models for the different combinations of
crops and fields. The variogram model with the smallest AICC is
considered the best. In most of the scenarios the Gaussian model
performance is the best since the AICC values are the smallest.
The performance of the spherical and exponential models is very
similar. The average AICC values of the spherical, exponential,
and Gaussian models for all the scenarios are: 66.3, 62.0, and
61.3, respectively. Fields U.S.01, U.S.04, and U.S.14 were used
to construct variograms for the different crop scenarios while
fields U.S.09, U10, and U.S.80 were used for validation.

Fig. 2 shows an example of the indicator variograms for field
U.S.04 for a scenario of planting alfalfa. From the data presented
in Table 3, the AICC value of the Gaussian model is the smallest;
and therefore, it was used to construct the indicator variogram by
sorting the collected soil salinity data for that field from low to
high. Five classes were assigned to the sorted soil salinity data
according to the percent yield potential of alfalfa to represent the
following yield potentials: 90, 75, 50, <50~ >0, and 0%.

Table 4 shows the yield potential areas of each class and the
corresponding zones of uncertainty for all the scenarios of the
selected crops and fields. In addition, Fig. 3 shows pie charts that
summarize all scenarios of the different combinations of crops
and fields. The same color scheme used with the maps was also
used to produce the pie charts where colors go from light to dark
to represent productivity from high to low. Both Table 4 and Fig.
3 show that fields with low soil salinity ranges (U.S.01 and
U.S.09) can reach the maximum production for all crops. How-
ever, with moderate and high salinity fields, only sorghum and
wheat start with 100% yield potential areas. Alfalfa has good
production and in most scenarios, it starts with 90% yield poten-
tial areas. Corn has moderate production and in most cases, it
starts with 75% yield potential areas.

Figs. 4—6 show three examples of IK maps for fields U.S.01,
U.S.14, and U.S.04 which represent low, moderate, and high soil
salinity ranges when alfalfa, corn, sorghum, and wheat are as-
sumed to be grown. Fig. 4 shows the IK maps for field U.S.01,
which has low soil salinity. The whole area of field U.S.01 can
reach the maximum expected productivity (100% yield potential)
for wheat, while the expected production of sorghum is quite high
with the majority of the field having the potential to produce
100% of yield potential with small areas of 90 and 75% of yield
potential. Alfalfa’s expected production is high with most of the

Alfalfa Corn Sorghum Wheat

USol

UsSo4

US09

us10

US14

US80

seeces
ees oo
OSSO
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100%YP “90%YP ®75%YP ®50%YP H25%YP H0%YP

Fig. 3. Pie charts showing different categorical kriging areas for the
different fields when different crops are evaluated

field expected to produce between 90 and 100% of yield potential
and very small areas expected to produce 75% of yield potential.
Corns’ expected production is moderate where the production is
between 90 and 50% of yield potential.

Fig. 5 shows IK maps for field U.S.14, with moderate soil
salinity range when the scenarios of planting alfalfa, corn, sor-
ghum, and wheat are applied. The wheat expected yield in field
U.S.14 is high with large areas represented by 100% of yield
potential and very small areas represented by 90 and 75% of yield
potential. Alfalfas expected production is reasonably good where
the expected yield production is between 90 and less than 50% of
yield potential. Sorghum has moderate production where large
areas in the field are represented by 100 and 90% of yield poten-
tial and some areas are represented by 75 and 50% of yield po-
tential. Corn is moderate where the expected production is
between 75 and less than 50% of yield potential.

Fig. 6 shows IK maps for field U.S.04, with high soil salinity
range when the scenarios of planting alfalfa, corn, sorghum, and
wheat are applied. Even though field U.S.04 has relatively high
soil salinity, the expected production of wheat is relatively high
with a large percent of the area represented by 100 and 90% of
yield potential. The expected production for sorghum and alfalfa
is moderate where the production of sorghum covers a range be-
tween 100 and 0% of yield potential, while alfalfa covers a range
between 90 and 0% of yield potential. Corn’s expected production
is poor with a few areas represented by 75% of yield potential and
the majority of the areas have 50% or less of yield potential.

Fig. 7 shows an example of zones of uncertainty for field
U.S.14 when the scenario of planting alfalfa is applied. One of the
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Fig. 4. IK maps for field U.S.01 (low soil salinity) when different crops are evaluated
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Fig. 5. IK maps for field U.S.14 (moderate soil salinity) when different crops are evaluated
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Fig. 6. IK maps for field U.S.04 (high soil salinity range) when different crops are evaluated

advantages of IK is that it can provide a risk-assessment tool for
high-risk regions in a field. Fig. 7 as well as Table 4 show how
these areas can be quantified. As shown in Table 4, the areas of
the different zones of uncertainty vary between 0 and 35% of the
class area.

Table 5 shows the total revenue, cost, and net revenue for
alfalfa, corn, sorghum, and wheat based on the Colorado State
University Extension (Agriculture and Business Management)
2007 crop budget estimates. The total revenue includes the final
revenue of the crop without taking into account the costs. Net
revenue is the revenue after the costs are taken into account. The
net revenue and cost of alfalfa and corn are high while both are
low for sorghum and wheat. For 1 ha of alfalfa, in order to gain a
net revenue of $1,028, a grower needs to spend $751 while they
only need to spend $161 for sorghum but they only gain a net
revenue of $220.

Table 6 shows the adjusted net revenue with and without risk
according to the IK maps of yield potential of each crop based on
the soil salinity thresholds of each field. The net revenue of the
different crops has the following order: alfalfa, corn, wheat, and
sorghum. The net revenue of alfalfa and corn are highly affected
by the soil salinity levels while sorghum and wheat are slightly
affected. Table 5 shows that there is a slight difference between
the net revenue of alfalfa and corn while Table 6 shows that there
is a significant difference in the adjusted net revenue for alfalfa
and corn among different fields due to the sensitivity of these
crops to salinity and the salinity levels in each field. The differ-
ence between the net revenue of alfalfa and corn is significant in
all fields except for field U.S.09. That is due to the fact that soil
salinity in field U.S.09 allows for 100% of yield potential and
there is a big portion of the field with 90% of yield potential while

the salinity levels in other fields allows only for 75% or less of
yield potential. Uncertainty zones sometimes have significant im-
pact and sometimes marginal impact. Therefore, taking uncer-
tainty zones into consideration provides farmers with more
support when making a selection on the crop that has the potential
to generate higher net revenue.

Table 7 shows the performance parameter values of IK when
evaluating alfalfa, corn, sorghum, and wheat as possible crops
under different soil salinity conditions. N/A means that the whole
field can produce 100% of yield potential which applies to the
crops with high tolerance to soil salinity when planted in the
fields with low soil salinity levels. G values are positive for the
fields with high and moderate soil salinity (U.S.04, U.S.10,
U.S.14, and U.S.80) while it does not perform as well in fields
with low soil salinity (U.S.01 and U.S.09). In some cases, the G
value reaches 1 or close to 1 which means that the model is
perfect, such as corn and wheat in U.S.04 and corn in U.S.09. The
RVar values are closest to 1 in fields with a high range of soil
salinity (U.S.04 and U.S.10). In cases where the RVar values are
small such as wheat in U.S.14 and U.S.80, this means that the
model was not able to overcome the smoothing effects problem.
The RMSE values are reasonable in all fields since all values are
equal or less than 1.

As previously mentioned, several studies have been carried out
using IK applications in soil science. However, none of them used
IK as a tool to manage soil salinity with crop productivity to
maximize the benefit. As presented in the results above, IK was
used to determine which crops to grow in order to maximize the
potential net benefits taking into account the variability of soil
salinity in the fields. In this study, different thresholds were made
in the soil salinity databased on the salt tolerance of different
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Fig. 7. Zones of uncertainty for field U.S.14 for alfalfa

crops. Therefore, instead of representing different soil salinity
thresholds, the resulting indicator variograms represent different
yield potentials. To improve the usability of the resulting maps,
the different areas of yield potential as well as the corresponding
zones of uncertainty of produced maps were quantified and evalu-
ated. The yield potential and the uncertainty zones can provide a
management tool for selecting the crops that have the potential to
generate the highest yields. However, high yield of a specific crop
is not guaranteed to provide the maximum net revenue due to the
market price, therefore, the net revenue values were evaluated and
adjusted to incorporate the variability in soil salinity in fields.

Crop Selection Recommendations

The following are practical recommendations for farmers and
technicians to be used as guidelines for crop selection based on
the variability of soil salinity:

e Case 1: low level of soil salinity where no significant impact
on most crops. In this case, no restrictions for crop selection
and high profit crops should be considered. Alfalfa would be
strongly recommended as the first choice while corn would be
recommended as the second choice. The expected net revenue
from examples presented in this study for low levels of soil
salinity can provide a net revenue for alfalfa of approximately
$900/ha while the expected net revenue for corn is approxi-
mately $750/ha. Wheat and sorghum are not recommended
since the net revenue for both of them is low compared to
those of alfalfa and corn.

e Case 2: moderate level of soil salinity where the impact of soil
salinity is slight on moderate sensitive crops such as alfalfa
and corn and no impact on moderate tolerant crops such as
wheat and sorghum. Alfalfa is strongly recommended as the
best choice. The examples in this study for moderate level of
soil salinity fields shows that the net revenue of alfalfa would

be $800/ha while the net revenue of corn would be $660/ha.
e Case 3: high level of soil salinity where its impact on moderate

sensitive crops is significant while the impact on moderate
tolerant crops such as wheat and sorghum is slight. Even
though the high level of soil salinity has significant impact on
moderate sensitive crops, these crops still provide high net
revenue. The examples presented for high soil salinity levels
shows a net revenue of approximately $580/ha while the sec-
ond choice would be corn with a net revenue of approximately
$440/ha.

It is clear that the market price has greater impact on crop
selection rather than soil salinity impact. As presented earlier, the
expected yield of alfalfa and corn is less than the expected yield
of wheat and sorghum. However, the market price of alfalfa and
corn is higher than those of wheat and sorghum which makes
alfalfa and corn better selections. There was a significant differ-
ence between the prices of alfalfa and corn versus wheat and
sorghum in spite of the reduction in the productivity of alfalfa and
corn due to the impact of soil salinity. To make the results of this
study more general, the crops presented: alfalfa, corn, wheat, and
sorghum can be replaced by crops with similar tolerance to soil
salinity in order to accommodate other crop selections. Therefore,
since alfalfa and corn are moderate sensitive to soil salinity, they
can be replaced by some other crops that have the same tolerance
to soil salinity such as broccoli, cabbage, celery, cucumbers, and

Table 5. Total Revenue, Cost, and Net Revenue per Hectare ($/ha) of
Alfalfa, Corn, Sorghum, and Wheat

Crop Alfalfa Corn Sorghum Wheat
Total revenue ($/ha) 1,780 1,780 381 863
Cost ($/ha) 751 724 161 403
Net revenue ($/ha) 1,028 1,055 220 460
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Table 6. Adjusted Net Revenue ($/ha) with and without Risk of Alfalfa, Corn, Sorghum, and Wheat under the Different Conditions of Soil Salinity at the

Selected Fields

Alfalfa Corn Sorghum Wheat
Net revenue Net revenue Net revenue Net revenue
($/ha) ($/ha) ($/ha) ($/ha)
Without With Without With Without With Without With

Field ID uncertainty uncertainty® uncertainty® uncertainty uncertainty® uncertainty uncertainty” uncertainty
U.S.01 878 661 589 447 219 212 460 460
U.S.04 511 407 364 297 141 108 346 250
U.S.09 937 880 902 745 220 220 460 460
U.S.10 658 478 522 266 169 74 380 168
U.S.14 758 574 609 609 201 151 455 371
U.S.80 837 686 714 599 211 168 458 363

*With Uncertainty=net revenue was calculated using the percentage of the uncertainty zones.

tomatoes. Wheat and sorghum are moderate tolerant to soil salin-
ity, therefore, they can be replaced by grapes, pineapples, squash,
and sugar beets.

Conclusions

A geostatistical approach (IK), which makes no assumptions re-
garding the normality of the data set and is essentially a nonpara-
metric model, was used in this study. IK uses the behavior and
correlation structure of the transformed data instead of the data
itself. It uses a series of threshold values between the smallest and
largest data values in the data set. This advantage allows incor-
porating soil salinity with crop yield potential where soil salinity
values were transformed into yield potential classes. Therefore,
IK was successful in generating classified maps of expected yield
potential of the main crops grown in the study area. In addition to
generating the classified maps, the results show that IK has the
power to generate the corresponding zones of uncertainty. Provid-
ing farmers with information regarding the uncertainty associated
with each zone, which can help them in their decision making
process. The fields used in this study were selected to represent

Table 7. Performance Parameters: RMSE, RVar, and G Values of 1K
when Evaluating Alfalfa, Corn, Sorghum, and Wheat as Possible Crops

RMSE RVar G RMSE RVar G
U.S.01 U.S.04
Alfalfa 0.59 0.95 -0.12 0.78 1.05 0.61
Corn 0.85 0.82 —0.49 0.06 1.00 1.00
Sorghum 0.46 0.54 0.02 1.00 1.04 0.57
Wheat N/A N/A N/A 0.06 1.00 1.00
U.S.09 (Validation) U.S.10 (Validation)
Alfalfa 0.60 0.40 —0.44 0.45 1.05 0.89
Corn 0.36 0.99 0.64 0.33 1.04 0.93
Sorghum N/A N/A N/A 0.44 1.03 0.93
Wheat N/A N/A N/A 0.61 1.06 0.84
U.S.14 U.S.80 (Validation)
Alfalfa 0.49 0.77 0.57 0.49 0.90 0.62
Corn 0.40 0.87 0.64 0.44 0.70 0.61
Sorghum 0.73 0.77 0.45 0.69 0.79 0.47
Wheat 0.63 0.42 0.02 0.46 0.25 0.38

different levels of soil salinity from low, to moderate, to high. Soil
salinity values for some fields were homogeneous with small
ranges such as field U.S.09 while others had high ranges such as
U.S.04. The outcomes of this study show how to obtain the maxi-
mum productivity for a particular field under its current soil sa-
linity conditions. However, to reach a high potential productivity
may be a target; but to maximize the expected net revenue under
different soil salinity conditions should be the optimal target. The
results presented in this study show that wheat and sorghum pro-
vide the highest expected yield potential while alfalfa and corn
provide the highest expected net revenue under the same condi-
tions of soil salinity. Therefore, this study can be used to develop
management strategy guidelines for crop selections in order to
maximize the economic benefit based on the soil salinity of fields.
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