Opportunities for enhanced attenuation of trace organics during infiltration

Jonathan O. (Josh) Sharp Colorado School of Mines Feb 22, 2024

Photo Credit: Megan Plumlee, Orange County Water District

Nature-based solutions for water treatment and storage

Goal: Purify water while increasing supply in water stressed regions

Approach: Develop, study, and optimize naturebased systems with multifaceted treatment (biological and abiotic).

Opportunities:

- 1) Water resource applications
- 2) Reliable & clean water supply
- 3) Sustainable: People, planet, & profit

INFILTRATION

Water Quality Challenges

TDS/turbidity

Shifts in redox/pH Precipitation (e.g. Fe, Mn) Mobilization (e.g. As, U)

Introduction (e.g. DBPs, Pharma, PFAS)

Attenuation Mechanisms

physical chemical biological

INFILTRATION

Water Quality Challenges

TDS/turbidity

Shifts in redox/pH Precipitation (e.g. Fe, Mn) Mobilization (e.g. As, U)

Introduction Nitrosamines, Pharma, PFAS

Attenuation Mechanisms

physical chemical biological

Pharmaceuticals are a ubiquitous class of trace organics associated with water reuse

Disinfection can form carcinogenic (and recalcitrant) byproducts

 CH_3 | $O_N N CH_3$

"It's tasteless, odorless, and dissolves instantly in water...."

Acute Exposure = Toxin \bigcirc (Homicide ≤ 1.5 grams)

Dose [µg/L]

Chronic Exposure = Carcinogen (EPA safe exposure = 0.7 ng/L)

Nature based-solutions offer a sustainable treatment alternative

Can we manage infiltration (and other nature-based systems) to increase biotransformation capabilities?

Image of Orange Country Groundwater Basin: Courtesy of OCWD

The challenge of trace organics and biodegradation

1ppt = ng/L = 1×10^{-12} There are 5×10^{10} drops of water in an Olympic size swimming pool

Growth is supported by mg/L or more: How can we select for desirable attributes?

Environmental stress can promote nitrosamine biodegradation

 $\uparrow environmental stress = \uparrow oxygenases = \uparrow biodegradation$ \downarrow Food
Oxygen
Desiccation
Toxicity
Sharp et al (2007). An inducible propane monooxygenase is
responsible for *n*-nitrosodimethylamine degradation by *Rhod*

responsible for *n*-nitrosodimethylamine degradation by *Rhodococcus* sp. Strain RHA1. *Appl Environ Microbiol.* **73**:6930-6938

Apply this toward antibiotics during simulated infiltration

Li et al (2014) Role of primary substrate composition on microbial community structure and function and trace organic chemical attenuation in managed aquifer recharge systems. *Appl. Micro. Biotechnology* 98:5747

Spatial profiles reveal increased biodegradation potential

Li et al (2020) Microbial genetic potential for xenobiotic metabolism increases with depth during biofiltration. Environ Sci: Processes Impacts. 22: 2058-2069

Wet/dry cycles can further influence biodegradation potential

C)

Water table lowered

Regnery et al (2020) Hydrogeochemical and microbiological effects of simulated recharge and drying within a 2D meso-scale aquifer. *Chemosphere*. 241, 125116.

A looming threat for subsurface banked water

- PFAS = Per- and Polyfluoroalkyl Substances
 - "Forever chemicals"
 - PFOA = Perfluorooctanoic Acid ($C_8HF_{15}O_2$)
 - PFOS = Perfluorooctane Sulfonate ($C_8HF_{17}O_3S$)
- Man-made compounds, no natural occurrence
- Used since the 1950s in many industrial and municipal applications
 - Heat resistant/ flame retardant, oil resistant, water resistant
- Properties which make these compounds useful also result in their persistence in the environment
- Varying (and moving target) approaches to regulation of concentration in drinking water at the State and Federal Level

Compound	Proposed MCL
PFOA	4 ppt (ng/L)
PFOS	4 ppt (ng/L)
PFNA	
PFHxS	1.0 (Hazard Index)
PFBS	
HFPO-	maoxy
DA(GenX0	
PFHxS:PFNA:HFPO-DA (Gen-X):PFBS: \circ ppt+ \circ ppt+ \circ ppt+	
9.0 ppt 10.0 ppt	10.0 ppt 2000.0 ppt
e o Hazard Index (unitless)	

The good: PFAS can undergo biodegradation **The bad:** long time, the more fluorinated (per vs. poly) the more difficult The ugly: often incomplete, precursors and reformation

Science of the Total Environment 859 (2023) 160010

Contents lists available at ScienceDirect Science of the Total Environment

journal homepage: www.elsevier.com/locate/scitotenv

Review

A review of microbial degradation of per- and polyfluoroalkyl substances (PFAS): Biotransformation routes and enzymes

Ashenafi Berhanu^{a,b,1}, Ishmael Mutanda^{a,1}, Ji Taolin^a, Majjid A. Qaria^a, Bin Yang^c, Daochen Zhu^{a,*}

^a Biofuels Institute, School of Environmental and Safety Engineering, Jiangsu University, Zhenjiang, Jiangsu 212013, China ^b Haramaya Institute of Technology, Department of Chemical Engineering, Haramaya University, Dire Dawa, Ethiopia ² Bioproducts, Sciences and Engineering Laboratory, Department of Biological Systems Engineering, Washington State University, Richland, WA 99354, USA

HIGHLIGHTS

GRAPHICAL ABSTRACT

- · PFAS are toxic, bioaccumulative and persistent due to their recalcitrancy to microbial degradation.
- Physicochemical properties of PFAS relevant to biodegradation are discussed.
- · Overview of occurrence of PFAS and their microbial degradation in environmental matrices
- · Comprehensive synthesis of progress in microbial transformation/defluorination pathways
- · Factors affecting PFAS biodegradation, challenges and prospects for bioremediation are discussed.

Science of the Total Environment 824 (2022) 153711

Review

Microbial biotransformation of aqueous film-forming foam derived polyfluoroalkyl substances

Youn Jeong Choi^{a,e}, Damian E. Helbling^b, Jinxia Liu^c, Christopher I. Olivares^d, Christopher P. Higgins^{a,*}

^a Department of Civil and Environmental Engineering, Colorado School of Mines, Golden, CO, USA

- ^b School of Civil and Environmental Engineering, Cornell University, Ithaca, NY, USA
- ^c Department of Civil Engineering, McGill University, Montreal, Quebec, Canada
- ^d Department of Civil and Environmental Engineering, University of California, Irvine, CA, USA
- ^e Department of Agronomy, Purdue University, West Lafayette, IN, USA

HIGHLIGHTS

- · Microbial biotransformation of AFFFderived PFASs was reviewed.
- · ECF-derived and fluorotelomer-derived PFASs share head-group transformation pathways.
- · Dealkylation at N- and S-head groups are dominant biotransformation mechanisms. FASAs are semi-recalcitrant transformation products, and not all microcosm transformation products are found in the field.
- Further research is needed for transformation mechanisms on secondary amide and sulfonamides adjacent to fluorinated tails.

GRAPHICAL ABSTRACT

Engineer infiltration layers with targeted functions

Collaborative study underway to explore this for percolation basins

- Upper sediment layers remove: TSS, OM, nuts. & trace organics)
- Engineered geomedia is then more effective for targeted sorption of PFAS

Actively manage and operate these "passive" systems

Acknowledgements and Questions

