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Nature-based solutions for water

treatment and storage

Goal: Purify water while increasing supply in water
stressed regions

Approach: Develop, study, and optimize nature-
based systems with multifaceted treatment
(biological and abiotic).
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Opportunities: A
1) Water resource applications
2) Reliable & clean water supply
3) Sustainable: People, planet, & profit
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Water Quality Challenges

Nitrosamines, Pharma, PFAS

Attenuation Mechanisms



Pharmaceuticals are a ubiquitous class of trace organics
associated with water reuse




Disinfection can form carcinogenic (and recalcitrant) byproducts
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N NDMA
10 ng/L

“It’ s tasteless, odorless, and
dissolves instantly in water....“

Arsenic

10,000 ng/L

Cancer Incidence

Dose [ug/L]

Chronic Exposure = Carcinogen
Acute Exposure = Toxin @9 ) (EPA safe exposure = 0.7 ng/L)
(Homicide < 1.5 grams)



s offér a sustainable treatment alternative

aur%pés -solutig




Can we manage infiltration (and other nature-based systems)
to increase biotransformation capabilities?
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The challenge of trace organics and biodegradation
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Tppt=ng/L=1x107"2 Growth is supported by mg/L
There are 5x 107° drops of water in or more: How can we select for

an Olympic size swimming pool desirable attributes?



Environmental stress can promote nitrosamine
biodegradation
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e Sharp et al (2007). An inducible propane monooxygenase is
TOXICIty responsible for n-nitrosodimethylamine degradation by Rhodococcus
sp. Strain RHAL. Appl Environ Microbiol. 73:6930-6938



Apply this toward antibiotics during simulated infiltration
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Spatial profiles reveal increased biodegradation potential
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metabolism increases with depth during biofiltration.
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Wet/dry cycles can further influence biodegradation potential
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A looming threat for subsurface banked water [ j
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— "Forever chemicals”
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—  PFOS = Perfluorooctane Sulfonate (CgHF;,03S) PFOA 4 ppt (ng/L)
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The good: PFAS can undergo biodegradation
The bad: long time, the more fluorinated (per vs. poly) the more difficult
The ugly: often incomplete, precursors and reformation
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Engineer infiltration layers with targeted functions

Conventional MAR MAR w/ media layer
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Deploy a thin layer of activated zeolite (fluorosorb)
or analogous sorbent with a lifespan of decades+



Collaborative study underway to

explore this for percolation basins COLOMPOIIUMNE  __ RUREAU OF —

JACOBS RECLAMATION

MAR w/ media layer

3.) Recharged water w/o PFAS

* Upper sediment layers remove: TSS, OM, nuts. & trace organics)
* Engineered geomedia is then more effective for targeted sorption of PFAS



Actively manage and operate these ”passive” systems
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